An optimized image matching method for determining in-vivo TKA kinematics with a dual-orthogonal fluoroscopic imaging system

被引:77
作者
Bingham, Jeffrey
Li, Guoan
机构
[1] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Bioengn Lab,Dept Orthopaed Surg, Boston, MA 02114 USA
[2] MIT, Dept Mech Engn, Boston, MA USA
来源
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME | 2006年 / 128卷 / 04期
关键词
D O I
10.1115/1.2205865
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
This study presents an optimized matching algorithm for a dual-orthogonal fluoroscopic image system used to determine six degrees-of-freedom total knee arthroplasty (TYA) kinematics in-vivo. The algorithm was evaluated using controlled conditions and standard geometries. Results of the validation demonstrate the algorithm's robustness and capability of realizing-a pose from a variety of initial poses. Under idealized conditions, poses of a TKA system were recreated to within 0.02 +/- 0.01 mm and 0.02 +/- 0.03 deg for the femoral component and 0.07 +/- 0.09 mm and 0.16 +/- 0.18 deg for the tibial component. By employing a standardized geometry with spheres, the translational accuracy and repeatability under actual conditions was found to be 0.01 +/- 0.06 mm. Application of the optimized matching algorithm to a TKA patient showed that the pose of in-vivo TKA components can be repeatedly located, with standard deviations less than +/- 0.12 mm and +/- 0.12 deg for the femoral component and +/- 0.29 mm and +/- 0.25 deg for the tibial component. This methodology presents a useful tool that can be readily applied to the investigation of in-vivo motion of TKA kinematics.
引用
收藏
页码:588 / 595
页数:8
相关论文
共 29 条
[1]   In vivo three-dimensional knee kinematics using a biplanar image-matching technique [J].
Asano, T ;
Akagi, M ;
Tanaka, K ;
Tamura, J ;
Nakamura, T .
CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2001, (388) :157-166
[2]   Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy [J].
Banks, SA ;
Hodge, WA .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1996, 43 (06) :638-649
[3]  
CANNY JF, 1986, PAMI, V8, P6, DOI DOI 10.1109/TPAMI.1986.4767851
[4]   In vivo tibiofemoral contact analysis using 3D MRI-based knee models [J].
DeFrate, LE ;
Sun, H ;
Gill, TJ ;
Rubash, HE ;
Li, GA .
JOURNAL OF BIOMECHANICS, 2004, 37 (10) :1499-1504
[5]  
Fletcher R., 1987, PRACTICAL METHODS OP, P436
[6]  
FUKUOKA Y, 1997, P 19 ANN INT C IEEE, V4, P1810
[7]   Marker Configuration Model-Based Roentgen Fluoroscopic Analysis [J].
Garling, EH ;
Kaptein, BL ;
Geleijns, K ;
Nelissen, RGHH ;
Valstar, ER .
JOURNAL OF BIOMECHANICS, 2005, 38 (04) :893-901
[8]   The accuracy and reproducibility of a global method to correct for geometric image distortion in the x-ray imaging chain [J].
Gronenschild, E .
MEDICAL PHYSICS, 1997, 24 (12) :1875-1888
[9]   Investigation of in vivo 6DOF total knee arthoplasty kinematics using a dual orthogonal fluoroscopic system [J].
Hanson, GR ;
Suggs, JF ;
Freiberg, AA ;
Durbhakula, S ;
Li, GA .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2006, 24 (05) :974-981
[10]   Pose estimation of artificial knee implants in fluoroscopy images using a template matching technique [J].
Hoff, WA ;
Komistek, RD ;
Dennis, DA ;
Walker, S ;
Northcut, E ;
Spargo, K .
THIRD IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION - WACV '96, PROCEEDINGS, 1996, :181-186