MicroRNA and cancer: Current status and prospective

被引:216
作者
Wu, Wei
Sun, Miao
Zou, Gang-Ming
Chen, Jianjun
机构
[1] Univ Chicago, Dept Med, Chicago, IL 60637 USA
[2] Indiana Univ, Sch Med, Herman B Wells Ctr Pediat Res, Indianapolis, IN 46204 USA
关键词
microRNAs; targets; oncomir; tumor suppressor gene; apoptosis; antagomir; cancer; COMPARATIVE-GENOMIC-HYBRIDIZATION; HUMAN LUNG CANCERS; MAMMALIAN MICRORNAS; NUCLEAR EXPORT; SMALL RNAS; REDUCED EXPRESSION; POOR-PROGNOSIS; CELL-GROWTH; IN-VIVO; C-MYC;
D O I
10.1002/ijc.22454
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Gene expression in normal cells is highly regulated by complex gene regulatory networks. Disruption of these networks may lead to cancer. Recent studies have revealed the existence of an abundant class of small nonprotein-coding regulatory RNAs, known as microRNAs (miRNAs). MiRNAs may regulate diverse biological processes including development, cell proliferation, differentiation and apoptosis, through suppressing the expression of their target genes. Posttranscriptional silencing of target genes by miRNAs occurs either by cleavage of homologous target messenger RNAs (mRNAs), or by inhibition of target protein synthesis. Computational predictions indicate that I miRNA may target on hundreds of genes, and suggest that over 50% of human protein-coding genes might be regulated by miRNAs. MiRNAs are receiving increased attention in cancer genomic research. We are beginning to understand that miRNAs may act as oncogenes and/or tumor suppressor genes within the molecular architecture of gene regulatory networks, thereby contributing to the development of cancer. MiRNAs may provide useful diagnostic and prognostic markers for cancer diagnosis and treatment, as well as serving as potential therapeutic targets or tools. (c) 2006 Wilev-Liss, Inc.
引用
收藏
页码:953 / 960
页数:8
相关论文
共 112 条
[1]   Perturbations of the AKT signaling pathway in human cancer [J].
Altomare, DA ;
Testa, JR .
ONCOGENE, 2005, 24 (50) :7455-7464
[2]   MicroRNA pathways in flies and worms: Growth, death, fat, stress, and timing [J].
Ambros, V .
CELL, 2003, 113 (06) :673-676
[3]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[4]  
[Anonymous], NATURE REVIEWS CANCE
[5]   Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation [J].
Bagga, S ;
Bracht, J ;
Hunter, S ;
Massirer, K ;
Holtz, J ;
Eachus, R ;
Pasquinelli, AE .
CELL, 2005, 122 (04) :553-563
[6]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[7]   Prediction and validation of microRNAs and their targets [J].
Bentwich, I .
FEBS LETTERS, 2005, 579 (26) :5904-5910
[8]   Identification of hundreds of conserved and nonconserved human microRNAs [J].
Bentwich, I ;
Avniel, A ;
Karov, Y ;
Aharonov, R ;
Gilad, S ;
Barad, O ;
Barzilai, A ;
Einat, P ;
Einav, U ;
Meiri, E ;
Sharon, E ;
Spector, Y ;
Bentwich, Z .
NATURE GENETICS, 2005, 37 (07) :766-770
[9]   Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs [J].
Bohnsack, MT ;
Czaplinski, K ;
Görlich, D .
RNA, 2004, 10 (02) :185-191
[10]   bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila [J].
Brennecke, J ;
Hipfner, DR ;
Stark, A ;
Russell, RB ;
Cohen, SM .
CELL, 2003, 113 (01) :25-36