High-Temperature Operation of Terahertz Quantum Cascade Laser Sources

被引:99
作者
Belkin, Mikhail A.
Wang, Qi Jie [1 ]
Pfluegl, Christian [1 ]
Belyanin, Alexey [2 ]
Khanna, Suraj P. [3 ]
Davies, Alexander Giles [3 ]
Linfield, Edmund Harold [3 ]
Capasso, Federico [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
[3] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Difference-frequency generation; intersubband transitions; nonlinear optics; quantum cascade lasers (QCLs); terahertz (THz) sources; BOUND-TO-CONTINUUM; INTERSUBBAND ELECTROLUMINESCENCE; OPTICAL-PROPERTIES; HIGH-POWER; GENERATION; WELL; PERFORMANCE; SCATTERING; BARRIER;
D O I
10.1109/JSTQE.2009.2013183
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Terahertz (THz) quantum cascade lasers (QCLs) are currently the most advanced electrically pumped semiconductor lasers in the spectral range 1-5 THz. However, their operation at room temperature is still an unresolved challenge. In this paper, we discuss our efforts to improve the temperature performance of these devices. In particular, we present THz QCLs that approach thermoelectric cooled operation and discuss factors that limit their high-temperature performance. We also discuss a different type of THz QCL source that produces coherent THz radiation without population inversion across the THz transition. These devices are based on intracavity difference-frequency generation in dual-wavelength mid-IR QCLs, and can now provide microwatt levels of coherent THz radiation up to room temperature. We discuss how the output power of these devices can be further improved to produce milliwatts of THz radiation at room temperature.
引用
收藏
页码:952 / 967
页数:16
相关论文
共 68 条
[1]   InGaAs-AlInAs/InP terahertz quantum cascade laser [J].
Ajili, L ;
Scalari, G ;
Hoyler, N ;
Giovannini, M ;
Faist, J .
APPLIED PHYSICS LETTERS, 2005, 87 (14) :1-3
[2]   Doping in quantum cascade lasers.: II.: GaAs/Al0.15Ga0.85As terahertz devices [J].
Ajili, Lassaad ;
Scalari, Giacomo ;
Giovannini, Marcella ;
Hoyler, Nicolas ;
Faist, Jerome .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (04)
[3]   Coherent 5.35 μm surface emission from a GaAs-based distributed feedback quantum-cascade laser -: art. no. 121104 [J].
Austerer, M ;
Pflügl, C ;
Golka, S ;
Schrenk, W ;
Andrews, AM ;
Roch, T ;
Strasser, G .
APPLIED PHYSICS LETTERS, 2006, 88 (12)
[4]  
BAI Y, 2008, APPL PHYS LETT, V93
[5]   Heterodyne mixing of two far-infrared quantum cascade lasers by use of a point-contact Schottky diode [J].
Barbieri, S ;
Alton, J ;
Beere, HE ;
Linfield, EH ;
Ritchie, DA ;
Withington, S ;
Scalari, G ;
Ajili, L ;
Faist, J .
OPTICS LETTERS, 2004, 29 (14) :1632-1634
[6]   Continuous wave operation of a mid-infrared semiconductor laser at room temperature [J].
Beck, M ;
Hofstetter, D ;
Aellen, T ;
Faist, J ;
Oesterle, U ;
Ilegems, M ;
Gini, E ;
Melchior, H .
SCIENCE, 2002, 295 (5553) :301-305
[7]  
BELKIN MA, 2008, APPL PHYS LETT, V92
[8]   Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K [J].
Belkin, Mikhail A. ;
Fan, Jonathan A. ;
Hormoz, Sahand ;
Capasso, Federico ;
Khanna, Suraj P. ;
Lachab, Mohamed ;
Davies, A. Giles ;
Linfield, Edmund H. .
OPTICS EXPRESS, 2008, 16 (05) :3242-3248
[9]   Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation [J].
Belkin, Mikhail A. ;
Capasso, Federico ;
Belyanin, Alexey ;
Sivco, Deborah L. ;
Cho, Alfred Y. ;
Oakley, Douglas C. ;
Vineis, Christopher J. ;
Turner, George W. .
NATURE PHOTONICS, 2007, 1 (05) :288-292
[10]   Importance of coherence for electron transport in terahertz quantum cascade lasers [J].
Callebaut, H ;
Hu, Q .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (10)