Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting

被引:169
作者
Chen, Q. [1 ]
Hubbard, G. [2 ]
Shields, P. A. [1 ]
Liu, C. [1 ]
Allsopp, D. W. E. [1 ]
Wang, W. N. [1 ]
Abbott, S. [2 ]
机构
[1] Univ Bath, Dept Elect & Elect Engn, Bath BA2 7AY, Avon, England
[2] MacDermid Autotype Ltd, Wantage OX12 7BZ, England
关键词
antireflection coatings; elemental semiconductors; nanolithography; silicon; solar cells;
D O I
10.1063/1.3171930
中图分类号
O59 [应用物理学];
学科分类号
摘要
Subwavelength scale antireflection moth-eye structures in silicon were fabricated by a wafer-scale nanoimprint technique and demonstrated an average reflection of 1% in the spectral range from 400 to 1000 nm at normal incidence. An excellent antireflection property out to large incident angles is shown with the average reflection below 8% at 60 degrees. Pyramid array gave an almost constant average reflection of about 10% for an incident angle up to 45 degrees and concave-wall column array produced an approximately linear relation between the average reflection and the incident angles. The technique is promising for improving conversion efficiencies of silicon solar cells.
引用
收藏
页数:3
相关论文
共 12 条
[1]   Tunable reflection minima of nanostructured antireflective surfaces [J].
Boden, S. A. ;
Bagnall, D. M. .
APPLIED PHYSICS LETTERS, 2008, 93 (13)
[2]   REDUCTION OF LENS REFLECTION BY MOTH EYE PRINCIPLE [J].
CLAPHAM, PB ;
HUTLEY, MC .
NATURE, 1973, 244 (5414) :281-282
[3]   Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics [J].
Doshi, P ;
Jellison, GE ;
Rohatgi, A .
APPLIED OPTICS, 1997, 36 (30) :7826-7837
[4]   Langmuir-Blodgett Monolayer Masked Chemical Etching: An Approach to Broadband Antireflective Surfaces [J].
Hao, Juanyuan ;
Lu, Nan ;
Xu, Hongbo ;
Wang, Wentao ;
Gao, Liguo ;
Chi, Lifeng .
CHEMISTRY OF MATERIALS, 2009, 21 (09) :1802-1805
[5]   Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures [J].
Huang, Yi-Fan ;
Chattopadhyay, Surojit ;
Jen, Yi-Jun ;
Peng, Cheng-Yu ;
Liu, Tze-An ;
Hsu, Yu-Kuei ;
Pan, Ci-Ling ;
Lo, Hung-Chun ;
Hsu, Chih-Hsun ;
Chang, Yuan-Huei ;
Lee, Chih-Shan ;
Chen, Kuei-Hsien ;
Chen, Li-Chyong .
NATURE NANOTECHNOLOGY, 2007, 2 (12) :770-774
[6]   Wafer-scale transfer of nanoimprinted patterns into silicon substrates [J].
Hubbard, G. ;
Abbott, S. J. ;
Chen, Q. ;
Allsopp, D. W. E. ;
Wang, W. N. ;
Bowen, C. R. ;
Stevens, R. ;
Satka, A. ;
Hasko, D. ;
Uherek, F. ;
Kovac, J. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2009, 41 (06) :1118-1121
[7]   Black nonreflecting silicon surfaces for solar cells [J].
Koynov, S ;
Brandt, MS ;
Stutzmann, M .
APPLIED PHYSICS LETTERS, 2006, 88 (20)
[8]   Realization of a near-perfect antireflection coating for silicon solar energy utilization [J].
Kuo, Mei-Ling ;
Poxson, David J. ;
Kim, Yong Sung ;
Mont, Frank W. ;
Kim, Long Kyu ;
Schuhert, E. Fred ;
Lin, Shawn-Yu .
OPTICS LETTERS, 2008, 33 (21) :2527-2529
[9]   Texturing industrial multicrystalline silicon solar cells [J].
Macdonald, DH ;
Cuevas, A ;
Kerr, MJ ;
Samundsett, C ;
Ruby, D ;
Winderbaum, S ;
Leo, A .
SOLAR ENERGY, 2004, 76 (1-3) :277-283
[10]   Angle-dependent reflectance measurements on photovoltaic materials and solar cells [J].
Parretta, A ;
Sarno, A ;
Tortora, P ;
Yakubu, H ;
Maddalena, P ;
Zhao, JH ;
Wang, AH .
OPTICS COMMUNICATIONS, 1999, 172 (1-6) :139-151