Machine-Learning Energy Gaps of Porphyrins with Molecular Graph Representations

被引:43
作者
Li, Zheng [1 ]
Omidvar, Noushin [1 ]
Chin, Wei Shan [1 ]
Robb, Esther [1 ]
Morris, Amanda [2 ]
Achenie, Luke [1 ]
Xin, Hongliang [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Chem Engn, Blacksburg, VA 24061 USA
[2] Virginia Polytech Inst & State Univ, Dept Chem, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
FINGERPRINT SIMILARITY SEARCH; ELECTROTOPOLOGICAL-STATE; SENSITIVITY-ANALYSIS; TOPOLOGICAL INDEXES; DISCOVERY; SYSTEMS; PERFORMANCE; EFFICIENCY; DESIGN; MODELS;
D O I
10.1021/acs.jpca.8b02842
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular functionalization of porphyrins opens countless new opportunities in tailoring their physicochemical properties for light-harvesting applications. However, the immense materials space spanned by a vast number of substituent ligands and chelating metal ions prohibits high-throughput screening of combinatorial libraries. In this work, machine-learning algorithms equipped with the domain knowledge of chemical graph theory were employed for predicting the energy gaps of >12 000 porphyrins from the Computational Materials Repository. Among a variety of graph-based molecular descriptors, the electrotopological-state index, which encodes electronic and topological structure information, captures the energy gaps of porphyrins with a prediction RMSE < 0.06 eV. Importantly, feature sensitivity analysis suggests that the carbon structural motif in methine bridges connected to the anchor group predominantly influences the energy gaps of porphyrins, consistent with the spatial distribution of their frontier molecular orbitals from quantum-chemical calculations.
引用
收藏
页码:4571 / 4578
页数:8
相关论文
共 79 条
  • [1] Potential applications of porphyrins in photodynamic inactivation beyond the medical scope
    Alves, Eliana
    Faustino, Maria A. F.
    Neves, Maria G. P. M. S.
    Cunha, Angela
    Nadais, Helena
    Almeida, Adelaide
    [J]. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2015, 22 : 34 - 57
  • [2] Functionalized porphyrin derivatives for solar energy conversion
    Angaridis, Panagiotis A.
    Lazarides, Theodore
    Coutsolelos, Athanassios C.
    [J]. POLYHEDRON, 2014, 82 : 19 - 32
  • [3] [Anonymous], 2013, Learning scikit-learn: Machine Learning in python
  • [4] [Anonymous], 2013, The Elements of Statistical Learning
  • [5] An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2
    Artrith, Nongnuch
    Urban, Alexander
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2016, 114 : 135 - 150
  • [6] Porphyrin-based metal-organic frameworks for solar fuel synthesis photocatalysis: band gap tuning via iron substitutions
    Aziz, Alex
    Rabdel Ruiz-Salvador, A.
    Hernandez, Norge C.
    Calero, Sofia
    Hamad, Said
    Grau-Crespo, Ricardo
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (23) : 11894 - 11904
  • [7] Machine learning unifies the modeling of materials and molecules
    Bartok, Albert P.
    De, Sandip
    Poelking, Carl
    Bernstein, Noam
    Kermode, James R.
    Csanyi, Gabor
    Ceriotti, Michele
    [J]. SCIENCE ADVANCES, 2017, 3 (12):
  • [8] Porphyrin-related photosensitizers for cancer imaging and therapeutic applications
    Berg, K
    Selbo, PK
    Weyergang, A
    Dietze, A
    Prasmickaite, L
    Bonsted, A
    Engesaeter, BO
    Angell-Petersen, E
    Warloe, T
    Frandsen, N
    Hogset, A
    [J]. JOURNAL OF MICROSCOPY, 2005, 218 : 133 - 147
  • [9] Porphyrins in analytical chemistry. A review
    Biesaga, M
    Pyrzynska, K
    Trojanowicz, M
    [J]. TALANTA, 2000, 51 (02) : 209 - 224
  • [10] Neural network predictions of oxygen interactions on a dynamic Pd surface
    Boes, Jacob R.
    Kitchin, John R.
    [J]. MOLECULAR SIMULATION, 2017, 43 (5-6) : 346 - 354