Maximal stable sets of two-player games

被引:11
作者
Govindan, S [1 ]
Wilson, R
机构
[1] Univ Western Ontario, Dept Econ, London, ON N6A 5C2, Canada
[2] Stanford Univ, Sch Business, Stanford, CA 94305 USA
关键词
perfect equilibria; stable sets;
D O I
10.1007/s001820200098
中图分类号
F [经济];
学科分类号
02 ;
摘要
If a connected component of perfect equilibria of a two-player game contains a stable set as defined by Mertens, then the component is itself stable. Thus the stable sets maximal under inclusion are connected components of perfect equilibria.
引用
收藏
页码:557 / 566
页数:10
相关论文
共 17 条
[1]   ON THE STRUCTURE OF THE SET OF PERFECT EQUILIBRIA IN BIMATRIX GAMES [J].
BORM, PEM ;
JANSEN, MJM ;
POTTERS, JAM ;
TIJS, SH .
OR SPEKTRUM, 1993, 15 (01) :17-20
[2]  
GOVIDAN S, 2001, COMPUTING NASH EQUIL
[3]   Equivalence and invariance of the index and degree of Nash equilibria [J].
Govindan, S ;
Wilson, R .
GAMES AND ECONOMIC BEHAVIOR, 1997, 21 (1-2) :56-61
[4]  
GOVINDAN S, 1999, GLOBAL NEWTON METHOD
[5]   A BOUND ON THE PROPORTION OF PURE STRATEGY EQUILIBRIA IN GENERIC GAMES [J].
GUL, F ;
PEARCE, D ;
STACCHETTI, E .
MATHEMATICS OF OPERATIONS RESEARCH, 1993, 18 (03) :548-552
[6]  
HAUK E, IN PRESS J EC THEORY
[7]   ON THE STRATEGIC STABILITY OF EQUILIBRIA [J].
KOHLBERG, E ;
MERTENS, JF .
ECONOMETRICA, 1986, 54 (05) :1003-1037
[8]  
KREPS D, 1982, ECONOMETRICA, V58, P863
[9]  
LEMKE CE, 1964, SIAM J APPL MATH, V12, P413