The catheter-driven MRI scanner: A new approach to intravascular catheter tracking and imaging-parameter adjustment for interventional MRI

被引:33
作者
Wacker, FK
Elgort, D
Hillenbrand, CM
Duerk, JL
Lewin, JS
机构
[1] Case Western Reserve Univ, Dept Radiol, Cleveland, OH 44106 USA
[2] Univ Med Berlin, Charite, Dept Radiol, D-12200 Berlin, Germany
[3] Johns Hopkins Univ Hosp, Dept Radiol, Baltimore, MD 21287 USA
关键词
D O I
10.2214/ajr.183.2.1830391
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
OBJECTIVE. Our aim was to test the feasibility of a hands-free approach to MRI that allows the interventionalist to track an angiographic catheter in real time throughout the procedure and to automatically change imaging parameters by catheter manipulation. MATERIALS AND METHODS. A tracking method that is based on an active device localization was implemented on a 1.5-T MRI scanner. The system determines the current position and orientation of a catheter in 3D space in an endless feedback loop. Automatic scanning plane-adjustment procedures written in the software of the MRI system ensure image acquisition at the location of the catheter tip. The system calculates the device velocity to automatically adjust parameters such as field of view (FOV) and resolution. To evaluate the feasibility and performance in vivo and ex vivo, we performed experiments in two vessel phantoms and on six pigs. RESULTS. The system collected the tracking data within 40 msec; an additional 10-20 msec was then required to perform the localization and velocity calculations and to update the image parameters. The system could localize a motionless catheter in the aorta in 100% and a moving catheter in 98% of measured attempts. The system responded in real time to changes in device velocity by dynamically adjusting spatial resolution and FOV in both phantom and porcine trials. Using this technique, we successfully catheterized the renal artery in two pigs. CONCLUSION. Active tracking, combined with automatic scanning plane and imaging parameter adjustment, provides an intuitive MRI scanner interface for the guidance of the vascular procedure.
引用
收藏
页码:391 / 395
页数:5
相关论文
共 39 条
[1]   Catheter visualisation in MR tomography: First animal experimental experiences with field inhomogeneity catheters. [J].
Adam, G ;
Glowinski, A ;
Neuerburg, J ;
Bucker, A ;
vanVaals, JJ ;
Hurtak, W ;
Gunther, RW .
ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 1997, 166 (04) :324-328
[2]  
Araki Takuji, 2002, Radiat Med, V20, P1
[3]   Catheter-tracking FOV MR fluoroscopy [J].
Atalar, E ;
Kraitchman, DL ;
Carkhuff, B ;
Lesho, J ;
Ocali, O ;
Solaiyappan, M ;
Guttman, MA ;
Charles, HK .
MAGNETIC RESONANCE IN MEDICINE, 1998, 40 (06) :865-872
[4]   MR-guided endovascular interventions: Susceptibility-based catheter and near-real-time imaging technique [J].
Bakker, CJ ;
Hoogeveen, RM ;
Hurtak, WF ;
vanVaals, JJ ;
Viergever, MA ;
Mali, WPTM .
RADIOLOGY, 1997, 202 (01) :273-276
[5]  
Bock Michael, 2003, Z Med Phys, V13, P177
[6]   MR-guided coil embolisation of renal arteries in an animal model [J].
Bücker, A ;
Neuerburg, JM ;
Adam, G ;
Glowinski, A ;
van Vaals, JJ ;
Günther, RW .
ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2003, 175 (02) :271-274
[7]  
Buecker A, 2000, J MAGN RESON IMAGING, V12, P616, DOI 10.1002/1522-2586(200010)12:4<616::AID-JMRI15>3.0.CO
[8]  
2-F
[9]   REAL-TIME POSITION MONITORING OF INVASIVE DEVICES USING MAGNETIC-RESONANCE [J].
DUMOULIN, CL ;
SOUZA, SP ;
DARROW, RD .
MAGNETIC RESONANCE IN MEDICINE, 1993, 29 (03) :411-415
[10]   A method for fast 3D tracking using tuned fiducial markers and a limited projection reconstruction FISP (LPR-FISP) sequence [J].
Flask, C ;
Elgort, D ;
Wong, E ;
Shankaranarayanan, A ;
Lewin, J ;
Wendt, M ;
Duerk, JL .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2001, 14 (05) :617-627