Evaluating probes for "electrical" atomic force microscopy

被引:58
作者
Trenkler, T
Hantschel, T
Stephenson, R
De Wolf, P
Vandervorst, W
Hellemans, L
Malavé, A
Büchel, D
Oesterschulze, E
Kulisch, W
Niedermann, P
Sulzbach, T
Ohlsson, O
机构
[1] IMEC, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Chem, B-3001 Louvain, Belgium
[3] Univ Gesamthsch Kassel, Inst Tech Phys, D-34109 Kassel, Germany
[4] Ctr Suisse Elect & Microtech SA, CH-2007 Neuchatel, Switzerland
[5] Nanosensors GMBH, D-35578 Wetzlar, Germany
[6] Katholieke Univ Leuven, INSYS, B-3001 Louvain, Belgium
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2000年 / 18卷 / 01期
关键词
D O I
10.1116/1.591205
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The availability of very sharp, wear-proof, electrically conductive probes is one crucial issue for conductive atomic force microscopy (AFM) techniques such as scanning capacitance microscopy; scanning spreading resistance microscopy, and nanopotentiometry. The purpose of this systematic study is to give an overview of the existing probes and to evaluate their performance for the electrical techniques with emphasis on applications on Si at high contact forces. The suitability of the characterized probes has been demonstrated by applying Conductive AEM techniques to test structures and state-of-the-art semiconductor devices. Two classes. of probes were examined geometrically and electrically: Si sensors with a conductive coating and integrated pyramidal tips made of metal or diamond. Structural information about the conductive materials was obtained by electron microscopy and other analytical tools. Swift and nondestructive procedures to characterize the geometrical and electrical properties of the probes prior to the actual AFM experiment have been developed. Existing contact models have been used to explain variations in the electrical performance of the conductive probes. (C) 2000 American Vacuum Society. [S0734-211X(00)01901-6].
引用
收藏
页码:418 / 427
页数:10
相关论文
共 20 条
[1]   MICROFABRICATION OF CANTILEVER STYLI FOR THE ATOMIC FORCE MICROSCOPE [J].
ALBRECHT, TR ;
AKAMINE, S ;
CARVER, TE ;
QUATE, CF .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1990, 8 (04) :3386-3396
[2]   Cross-sectional nano-spreading resistance profiling [J].
De Wolf, P ;
Clarysse, T ;
Vandervorst, W ;
Hellemans, L ;
Niedermann, P ;
Hanni, W .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (01) :355-361
[3]   Two-dimensional carrier profiling of InP structures using scanning spreading resistance microscopy [J].
De Wolf, P ;
Geva, M ;
Hantschel, T ;
Vandervorst, W ;
Bylsma, RB .
APPLIED PHYSICS LETTERS, 1998, 73 (15) :2155-2157
[4]   CHARACTERIZATION OF A POINT-CONTACT ON SILICON USING FORCE MICROSCOPY-SUPPORTED RESISTANCE MEASUREMENTS [J].
DEWOLF, P ;
SNAUWAERT, J ;
CLARYSSE, T ;
VANDERVORST, W ;
HELLEMANS, L .
APPLIED PHYSICS LETTERS, 1995, 66 (12) :1530-1532
[5]   Application of a semiconductor tip to capacitance microscopy [J].
Goto, K ;
Hane, K .
APPLIED PHYSICS LETTERS, 1998, 73 (04) :544-546
[6]   Fabrication and use of metal tip and tip-on-tip probes for AFM-based device analysis [J].
Hantschel, T ;
De Wolf, P ;
Trenkler, T ;
Stephenson, R ;
Vandervorst, W .
MATERIALS AND DEVICE CHARACTERIZATION IN MICROMACHINING, 1998, 3512 :92-103
[7]   Phase transformations of silicon caused by contact loading [J].
Kailer, A ;
Gogotsi, YG ;
Nickel, KG .
JOURNAL OF APPLIED PHYSICS, 1997, 81 (07) :3057-3063
[8]   ION-IMPLANTED DIAMOND TIP FOR A SCANNING TUNNELING MICROSCOPE [J].
KANEKO, R ;
OGUCHI, S .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 1990, 29 (09) :1854-1855
[9]   Diamond tips and cantilevers for the characterization of semiconductor devices [J].
Malavé, A ;
Oesterschulze, E ;
Kulisch, W ;
Trenkler, T ;
Hantschel, T ;
Vandervorst, W .
DIAMOND AND RELATED MATERIALS, 1999, 8 (2-5) :283-287
[10]   Direct comparison of two-dimensional dopant profiles by scanning capacitance microscopy with TSUPREM4 process simulation [J].
McMurray, JS ;
Kim, J ;
Williams, CC ;
Slinkman, J .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (01) :344-348