Numerical evaluation of the Lambert W function and application to generation of generalized Gaussian noise with exponent 1/2

被引:150
作者
Chapeau-Blondeau, F [1 ]
Monir, A [1 ]
机构
[1] Univ Angers, LISA, Angers, France
关键词
generalized Gaussian noise; Lambert W function; noise synthesis;
D O I
10.1109/TSP.2002.801912
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We address the problem of synthesizing a generalized Gaussian noise with exponent 1/2 by means of a nonlinear memoryless transformation applied to a uniform noise. We show that this transformation is expressable in terms of a special function known under the name of the Lambert W function. We review the main methods for numerical evaluation of the relevant branch of the (multivalued) Lambert W function with controlled accuracy and complement them with an original rational function approximation. Based on these methods, synthesis of the generalized Gaussian noise can be performed with arbitrary accuracy. We construct a simple and fast evaluation algorithm with prescribed accuracy, which is especially suited for Monte Carlo simulation requiring large numbers of realizations of the generalized Gaussian noise.
引用
收藏
页码:2160 / 2165
页数:6
相关论文
共 19 条
[1]   Estimation based on entropy matching for generalized Gaussian PDF modeling [J].
Aiazzi, B ;
Alparone, L ;
Baronti, S .
IEEE SIGNAL PROCESSING LETTERS, 1999, 6 (06) :138-140
[2]  
[Anonymous], IEEE T IMAGE PROCESS, DOI DOI 10.1109/83.753747
[3]  
[Anonymous], PRACTICAL GUIDE HEAV
[4]   REAL VALUES OF THE W-FUNCTION [J].
BARRY, DA ;
CULLIGANHENSLEY, PJ ;
BARRY, SJ .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1995, 21 (02) :161-171
[5]   ON THE MODELING OF DCT AND SUBBAND IMAGE DATA FOR COMPRESSION [J].
BIRNEY, KA ;
FISCHER, TR .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1995, 4 (02) :186-193
[6]   Nonlinear test statistic to improve signal detection in non-Gaussian noise [J].
Chapeau-Blondeau, F .
IEEE SIGNAL PROCESSING LETTERS, 2000, 7 (07) :205-207
[7]   Lattice vector quantization of generalized Gaussian sources [J].
Chen, F ;
Gao, Z ;
Villasenor, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (01) :92-103
[8]  
Corless R., 1993, MAPLE TECHNICAL NEWS, V9, P12
[9]   On the Lambert W function [J].
Corless, RM ;
Gonnet, GH ;
Hare, DEG ;
Jeffrey, DJ ;
Knuth, DE .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) :329-359
[10]  
Frish U., 1995, LEGACY AN KOLMOGOROV