Ultralong Natural Graphene Nanoribbons and Their Electrical Conductivity

被引:32
作者
Moreno-Moreno, Miriam [3 ]
Castellanos-Gomez, Andres [3 ]
Rubio-Bollinger, Gabino [1 ]
Gomez-Herrero, Julio [1 ]
Agrait, Nicolas [1 ,2 ]
机构
[1] Univ Autonoma Madrid, Dept Fis Mat Condensada, Inst Nicolas Cabrera, E-28049 Madrid, Spain
[2] Univ Autonoma Madrid, IMDEA Nanociencia, E-28049 Madrid, Spain
[3] Univ Autonoma Madrid, Dept Fis Mat Condensada C 3, E-28049 Madrid, Spain
关键词
atomic force microscopy; conductivity; graphene; micromechanical cleavage; nanoribbons; ELECTRONIC TRANSPORT; CARBON; GAS;
D O I
10.1002/smll.200801442
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A study was conducted to demonstrate a method for investigating ultralong graphene nanoribbons (GNR) and their electrical conductivity. The method investigated graphene-flake deposition based on silicone stamps using optical and atomic force microscopy (AFM) to characterize the flakes. It was demonstrated that ultralong GNRs with a minimum width below 20nm were electrically characterized by conductance AFM. It was observed that additional properties emerged in the graphene when it was reduced to a long nanometer-wide ribbon. It was also demonstrated that crystallographic orientation played a key role in determining the electrical properties of GNRs. A more detailed inspection near these ribbons using AFM and scanning electron microscopy revealed that they were composed of narrower nanoribbons whose widths ranged between ≈20-120 nm. The use of AFM allowed to characterize the thickness of these flakes and nanoribbons that were thin as a single monolayer.
引用
收藏
页码:924 / 927
页数:4
相关论文
共 37 条
[1]   Density inhomogeneity driven percolation metal-insulator transition and dimensional crossover in graphene nanoribbons [J].
Adam, S. ;
Cho, S. ;
Fuhrer, M. S. ;
Das Sarma, S. .
PHYSICAL REVIEW LETTERS, 2008, 101 (04)
[2]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[3]   Making graphene visible [J].
Blake, P. ;
Hill, E. W. ;
Castro Neto, A. H. ;
Novoselov, K. S. ;
Jiang, D. ;
Yang, R. ;
Booth, T. J. ;
Geim, A. K. .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[4]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[5]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[6]   Crystallographic etching of few-layer graphene [J].
Datta, Sujit S. ;
Strachan, Douglas R. ;
Khamis, Samuel M. ;
Johnson, A. T. Charlie .
NANO LETTERS, 2008, 8 (07) :1912-1915
[7]   Side-gated transport in focused-ion-beam-fabricated multilayered graphene nanoribbons [J].
Dayen, Jean-Francois ;
Mahmood, Ather ;
Golubev, Dmitry S. ;
Roch-Jeune, Isabelle ;
Salles, Philippe ;
Dujardin, Erik .
SMALL, 2008, 4 (06) :716-720
[8]   Nonlinear resistance versus length in single-walled carbon nanotubes -: art. no. 036804 [J].
de Pablo, PJ ;
Gómez-Navarro, C ;
Colchero, J ;
Serena, PA ;
Gómez-Herrero, J ;
Baró, AM .
PHYSICAL REVIEW LETTERS, 2002, 88 (03) :4
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Radial electromechanical properties of carbon nanotubes [J].
Gómez-Navarro, C ;
de Pablo, PJ ;
Gómez-Herrero, J .
ADVANCED MATERIALS, 2004, 16 (06) :549-+