Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal

被引:504
作者
Acar, Melih [2 ,3 ]
Kocherlakota, Kiranmai S. [1 ,2 ,3 ]
Murphy, Malea M. [2 ,3 ]
Peyer, James G. [2 ,3 ]
Oguro, Hideyuki [2 ,3 ]
Inra, Christopher N. [2 ,3 ]
Jaiyeola, Christabel [2 ,3 ]
Zhao, Zhiyu [2 ,3 ]
Luby-Phelps, Katherine [4 ]
Morrison, Sean J. [1 ,2 ,3 ]
机构
[1] Univ Texas SW Med Ctr Dallas, Howard Hughes Med Inst, Dallas, TX 75390 USA
[2] Univ Texas SW Med Ctr Dallas, Childrens Res Inst, Dallas, TX 75390 USA
[3] Univ Texas SW Med Ctr Dallas, Dept Pediat, Dallas, TX 75390 USA
[4] Univ Texas SW Med Ctr Dallas, Dept Cell Biol, Dallas, TX 75390 USA
关键词
HEMATOPOIETIC STEM; ENDOTHELIAL-CELLS; PROGENITOR CELLS; MOUSE-BRAIN; NICHE; MAINTENANCE; MICROENVIRONMENT; SINUSOIDS; MICE;
D O I
10.1038/nature15250
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Haematopoietic stem cells (HSCs) reside in a perivascular niche but the specific location of this niche remains controversial(1). HSCs are rare and few can be found in thin tissue sections(2,3) or upon live imaging(4), making it difficult to comprehensively localize dividing and non-dividing HSCs. Here, using a green fluorescent protein (GFP) knock-in for the gene Ctnnal1 in mice (hereafter denoted as alpha-catulin(GFP)), we discover that alpha-catulin(GFP) is expressed by only 0.02% of bone marrow haematopoietic cells, including almost all HSCs. We find that approximately 30% of alpha-catulin-GFP(+)c-kit(+) cells give long-term multilineage reconstitution of irradiated mice, indicating that alpha-catulin-GFP(+)c-kit(+) cells are comparable in HSC purity to cells obtained using the best markers currently available. We optically cleared the bone marrow to perform deep confocal imaging, allowing us to image thousands of alpha-catulin-GFP(+)c-kit(+) cells and to digitally reconstruct large segments of bone marrow. The distribution of alpha-catulin-GFP(+)c-kit(+) cells indicated that HSCs were more common in central marrow than near bone surfaces, and in the diaphysis relative to the metaphysis. Nearly all HSCs contacted leptin receptor positive (Lepr(+)) and Cxcl12(high) niche cells, and approximately 85% of HSCs were within 10 mm of a sinusoidal blood vessel. Most HSCs, both dividing (Ki-67(+)) and non-dividing (Ki-67(-)), were distant from arterioles, transition zone vessels, and bone surfaces. Dividing and non-dividing HSCs thus reside mainly in perisinusoidal niches with Lepr(+)Cxcl12(high) cells throughout the bone marrow.
引用
收藏
页码:126 / +
页数:26
相关论文
共 46 条
[21]   A highly efficient recombineering-based method for generating conditional knockout mutations [J].
Liu, PT ;
Jenkins, NA ;
Copeland, NG .
GENOME RESEARCH, 2003, 13 (03) :476-484
[22]   Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche [J].
Lo Celso, Cristina ;
Fleming, Heather E. ;
Wu, Juwell W. ;
Zhao, Cher X. ;
Miake-Lye, Sam ;
Fujisaki, Joji ;
Cote, Daniel ;
Rowe, David W. ;
Lin, Charles P. ;
Scadden, David T. .
NATURE, 2009, 457 (7225) :92-U96
[23]   A robust and high-throughput Cre reporting and characterization system for the whole mouse brain [J].
Madisen, Linda ;
Zwingman, Theresa A. ;
Sunkin, Susan M. ;
Oh, Seung Wook ;
Zariwala, Hatim A. ;
Gu, Hong ;
Ng, Lydia L. ;
Palmiter, Richard D. ;
Hawrylycz, Michael J. ;
Jones, Allan R. ;
Lein, Ed S. ;
Zeng, Hongkui .
NATURE NEUROSCIENCE, 2010, 13 (01) :133-U311
[24]   Mesenchymal and haematopoietic stem cells form a unique bone marrow niche [J].
Mendez-Ferrer, Simon ;
Michurina, Tatyana V. ;
Ferraro, Francesca ;
Mazloom, Amin R. ;
MacArthur, Ben D. ;
Lira, Sergio A. ;
Scadden, David T. ;
Ma'ayan, Avi ;
Enikolopov, Grigori N. ;
Frenette, Paul S. .
NATURE, 2010, 466 (7308) :829-U59
[25]   Neural stem and progenitor cells in nestin-GFP transgenic mice [J].
Mignone, JL ;
Kukekov, V ;
Chiang, AS ;
Steindler, D ;
Enikolopov, G .
JOURNAL OF COMPARATIVE NEUROLOGY, 2004, 469 (03) :311-324
[26]   Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow [J].
Morikawa, Satoru ;
Mabuchi, Yo ;
Kubota, Yoshiaki ;
Nagai, Yasuo ;
Niibe, Kunimichi ;
Hiratsu, Emi ;
Suzuki, Sadafumi ;
Miyauchi-Hara, Chikako ;
Nagoshi, Narihito ;
Sunabori, Takehiko ;
Shimmura, Shigeto ;
Miyawaki, Atsushi ;
Nakagawa, Taneaki ;
Suda, Toshio ;
Okano, Hideyuki ;
Matsuzaki, Yumi .
JOURNAL OF EXPERIMENTAL MEDICINE, 2009, 206 (11) :2483-2496
[27]   The bone marrow niche for haematopoietic stem cells [J].
Morrison, Sean J. ;
Scadden, David T. .
NATURE, 2014, 505 (7483) :327-334
[28]   Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment [J].
Nombela-Arrieta, Cesar ;
Pivarnik, Gregory ;
Winkel, Beatrice ;
Canty, Kimberly J. ;
Harley, Brendan ;
Mahoney, John E. ;
Park, Shin-Young ;
Lu, Jiayun ;
Protopopov, Alexei ;
Silberstein, Leslie E. .
NATURE CELL BIOLOGY, 2013, 15 (05) :533-+
[29]   SLAM Family Markers Resolve Functionally Distinct Subpopulations of Hematopoietic Stem Cells and Multipotent Progenitors [J].
Oguro, Hideyuki ;
Ding, Lei ;
Morrison, Sean J. .
CELL STEM CELL, 2013, 13 (01) :102-116
[30]   Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation [J].
Omatsu, Yoshiki ;
Seike, Masanari ;
Sugiyama, Tatsuki ;
Kume, Tsutomu ;
Nagasawa, Takashi .
NATURE, 2014, 508 (7497) :536-+