Ultrahigh-speed InP/InGaAs double-heterostructure bipolar transistors and analyses of their operation

被引:42
作者
Matsuoka, Y [1 ]
Yamahata, S [1 ]
Kurishima, K [1 ]
Ito, H [1 ]
机构
[1] NIPPON TELEGRAPH & TEL PUBL CORP, SYST ELECT LABS, ATSUGI, KANAGAWA 24301, JAPAN
来源
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS | 1996年 / 35卷 / 11期
关键词
heterostructure bipolar transistor; Kirk effect; transit time; self-alignment; f(T); f(max); collector current density; small-signal equivalent circuit; collector capacitance;
D O I
10.1143/JJAP.35.5646
中图分类号
O59 [应用物理学];
学科分类号
摘要
Novel hexagonal emitters are proposed for heterostructure bipolar transistors (HBTs) with a base-metal-overlaid emitter-base self-alignment structure to reduce parasitic effects. Two different layer structures for InP/InGaAs double-heterostructure bipolar transistors (DHBTs) that can more fully utilize the inherent potential of the materials are used to enhance unity current gain cutoff frequency, f(T), and maximum oscillation frequency, S-max. On a wafer with a 180-nm-thick collector, a transistor with a 20-mu m(2) hexagonal emitter electrode shows an f(T) of 230 GHz and an f(max) of 147 GHz, while with a 4-mu m(2) hexagonal emitter electrode the corresponding values are 225 GHz and 241 GHz. f(max) of 300 GHz is achieved for a transistor with a 4-mu m(2) emitter electrode and a 330-nm-thick collector. Transistor operation is analyzed using a simple but appropriate small-signal equivalent circuit model of a transistor that includes internal and external base/collector capacitances and yields good estimates of the measured scattering (s-) parameters. Even in these InP-based (D)HBTs, the internal collector capacitance increases with collector current density due to the Kirk effect which degrades performance. In thin-collector (D)HBTs, the increase in the internal collector capacitance is suppressed, which increases the collector current density at which the transistor can operate normally, and f(T) is increased by both transit time reduction and high-collector-current operation.
引用
收藏
页码:5646 / 5654
页数:9
相关论文
共 32 条
[1]   FORWARD DELAY IN SCALED AL0.48IN0.52AS/IN0.53GA0.47AS HETEROJUNCTION BIPOLAR-TRANSISTORS [J].
BAQUEDANO, JA ;
LEVI, AFJ ;
JALALI, B ;
CHO, AY .
APPLIED PHYSICS LETTERS, 1993, 63 (16) :2231-2233
[2]   A MONOLITHIC 5-GB/S P-I-N/HBT INTEGRATED PHOTORECEIVER CIRCUIT REALIZED FROM CHEMICAL BEAM EPITAXIAL MATERIAL [J].
CHANDRASEKHAR, S ;
GNAUCK, AH ;
TSANG, WT ;
CHOA, FS ;
QUA, GJ .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1991, 3 (09) :823-825
[3]   AN INP INGAAS P-I-N HBT MONOLITHIC TRANSIMPEDANCE PHOTORECEIVER [J].
CHANDRASEKHAR, S ;
JOHNSON, BC ;
BONNEMASON, M ;
TOKUMITSU, E ;
GNAUCK, AH ;
DENTAI, AG ;
JOYNER, CH ;
PERINO, JS ;
QUA, GJ ;
MONBERG, EM .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1990, 2 (07) :505-506
[4]   ALGAAS/GAAS HETEROJUNCTION BIPOLAR-TRANSISTORS FABRICATED USING A SELF-ALIGNED DUAL-LIFT-OFF PROCESS [J].
CHANG, MCF ;
ASBECK, PM ;
WANG, KC ;
SULLIVAN, GJ ;
SHENG, NH ;
HIGGINS, JA ;
MILLER, DL .
IEEE ELECTRON DEVICE LETTERS, 1987, 8 (07) :303-305
[5]   SUBPICOSECOND INP/INGAAS HETEROSTRUCTURE BIPOLAR-TRANSISTORS [J].
CHEN, YK ;
NOTTENBURG, RN ;
PANISH, MB ;
HAMM, RA ;
HUMPHREY, DA .
IEEE ELECTRON DEVICE LETTERS, 1989, 10 (06) :267-269
[6]   MINORITY ELECTRON-TRANSPORT IN INP/INGAAS HETEROJUNCTION BIPOLAR-TRANSISTORS [J].
DODD, P ;
LUNDSTROM, M .
APPLIED PHYSICS LETTERS, 1992, 61 (04) :465-467
[7]   INGAAS INP COMPOSITE COLLECTOR HETEROSTRUCTURE BIPOLAR-TRANSISTORS [J].
FEYGENSON, A ;
RITTER, D ;
HAMM, RA ;
SMITH, PR ;
MONTGOMERY, RK ;
YADVISH, RD ;
TEMKIN, H ;
PANISH, MB .
ELECTRONICS LETTERS, 1992, 28 (07) :607-609
[8]   FULLY SELF-ALIGNED ALGAAS GAAS HETEROJUNCTION BIPOLAR-TRANSISTORS FOR HIGH-SPEED INTEGRATED-CIRCUITS APPLICATION [J].
HAYAMA, N ;
MADIHIAN, M ;
OKAMOTO, A ;
TOYOSHIMA, H ;
HONJO, K .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1988, 35 (11) :1771-1777
[9]   A POSSIBLE NEAR-BALLISTIC COLLECTION IN AN ALGAAS GAAS HBT WITH A MODIFIED COLLECTOR STRUCTURE [J].
ISHIBASHI, T ;
YAMAUCHI, Y .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1988, 35 (04) :401-404
[10]  
Kirk C. T, 1962, IRE T ELECTRON DEV, V9, P164