Ex situ n and p doping of vertical epitaxial short silicon nanowires by ion implantation

被引:10
作者
Das Kanungo, Pratyush [1 ]
Koegler, Reinhard [2 ]
Nguyen-Duc, Kien [1 ]
Zakharov, Nikolai [1 ]
Werner, Peter [1 ]
Goesele, Ulrich [1 ]
机构
[1] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany
[2] Forschungszentrum Dresden Rossendorf, FWIM, D-01314 Dresden, Germany
关键词
ELECTRONIC DEVICES; DIFFUSION; TRANSPORT;
D O I
10.1088/0957-4484/20/16/165706
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Vertical epitaxial short (200-300 nm long) silicon nanowires (Si NWs) grown by molecular beam epitaxy on Si(111) substrates were separately doped p- and n-type ex situ by implanting with B, P and As ions respectively at room temperature. Multi-energy implantations were used for each case, with fluences of the order of 10(13)-10(14) cm (2), and the NWs were subsequently annealed by rapid thermal annealing (RTA). Transmission electron microscopy showed no residual defect in the volume of the NWs. Electrical measurements of single NWs with a Pt/Ir tip inside a scanning electron microscope (SEM) showed significant increase of electrical conductivity of the implanted NWs compared to that of a nominally undoped NW. The p-type, i. e. B-implanted, NWs showed the conductivity expected from the intended doping level. However, the n-type NWs, i. e. P -and As-implanted ones, showed one to two orders of magnitude lower conductivity. We think that a stronger surface depletion is mainly responsible for this behavior of the n-type NWs.
引用
收藏
页数:7
相关论文
共 27 条
[1]   TRANSIENT ENHANCED DIFFUSION OF DOPANTS IN SILICON INDUCED BY IMPLANTATION DAMAGE [J].
ANGELUCCI, R ;
NEGRINI, P ;
SOLMI, S .
APPLIED PHYSICS LETTERS, 1986, 49 (21) :1468-1470
[2]   Electrical properties of nominally undoped silicon nanowires grown by molecular-beam epitaxy [J].
Bauer, Jan ;
Fleischer, Frank ;
Breitenstein, Otwin ;
Schubert, Luise ;
Werner, Peter ;
Goesele, Ulrich ;
Zacharias, Margit .
APPLIED PHYSICS LETTERS, 2007, 90 (01)
[3]   Silicon nanowires: the key building block for future electronic devices [J].
Chen, Lih J. .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (44) :4639-4643
[4]   Electronic transport properties of single-crystal silicon nanowires fabricated using an atomic force microscope [J].
Clément, N ;
Tonneau, D ;
Dallaporta, H ;
Bouchiat, V ;
Fraboulet, D ;
Mariole, D ;
Gautier, J ;
Safarov, V .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 13 (2-4) :999-1002
[5]   Ion beam doping of silicon nanowires [J].
Colli, Alan ;
Fasoli, Andrea ;
Ronning, Carsten ;
Pisana, Simone ;
Piscanec, Stefano ;
Ferrari, Andrea C. .
NANO LETTERS, 2008, 8 (08) :2188-2193
[6]   Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J].
Cui, Y ;
Lieber, CM .
SCIENCE, 2001, 291 (5505) :851-853
[7]   Doping and electrical transport in silicon nanowires [J].
Cui, Y ;
Duan, XF ;
Hu, JT ;
Lieber, CM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (22) :5213-5216
[8]   Controlled in situ boron doping of short silicon nanowires grown by molecular beam epitaxy [J].
Das Kanungo, Pratyush ;
Zakharov, Nikolai ;
Bauer, Jan ;
Breitenstein, Otwin ;
Werner, Peter ;
Goesele, Ulrich .
APPLIED PHYSICS LETTERS, 2008, 92 (26)
[9]   Surface segregation and backscattering in doped silicon nanowires [J].
Fernández-Serra, MV ;
Adessi, C ;
Blase, X .
PHYSICAL REVIEW LETTERS, 2006, 96 (16)
[10]  
Gandhi SorabK., 1994, VLSI Fabrication Principles-Silicon and Gallium Aresenide