Fabrication of Graphene Nanodisk Arrays Using Nanosphere Lithography

被引:103
作者
Cong, C. X. [1 ]
Yu, T. [1 ]
Ni, Z. H. [1 ]
Liu, L. [1 ]
Shen, Z. X. [1 ]
Huang, W. [2 ]
机构
[1] Nanyang Technol Univ, Div Phys & Appl Phys, Sch Math & Phys Sci, Singapore 637371, Singapore
[2] Nanjing Univ Posts & Telecommun, Jiangsu Key Lab Organ Elect & Informat Displays, Nanjing 210046, Peoples R China
关键词
RAMAN-SCATTERING;
D O I
10.1021/jp900011s
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ordered graphene nanodisk arrays have been successfully fabricated by combining nanosphere lithography and reactive ion etching (RIE) processes. The dimension of graphene nanodisks can be effectively tuned by varying the size of polystyrene spheres, which function as masks during RIE. Low-voltage scanning electron microscopy shows that the graphene sheet could be readily patterned into periodic disklike nanostructures by oxygen RIE. Raman mapping and spectroscopy further visualize such nanodisk arrays and reveal that the nature of disks are crystalline single layer graphene. This work demonstrates an efficient and manageable way to pattern graphene. By consideration of the periodicity, nanometer dimension, and high edge density compared to large-area graphene sheets, graphene nanodisk arrays, such two-dimensional assembly of carbon atoms, offer intrisic advantages in various electronic and spintronic fabrications.
引用
收藏
页码:6529 / 6532
页数:4
相关论文
共 29 条
[1]   Quasiparticle dynamics in graphene [J].
Bostwick, Aaron ;
Ohta, Taisuke ;
Seyller, Thomas ;
Horn, Karsten ;
Rotenberg, Eli .
NATURE PHYSICS, 2007, 3 (01) :36-40
[2]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[3]   Side-gated transport in focused-ion-beam-fabricated multilayered graphene nanoribbons [J].
Dayen, Jean-Francois ;
Mahmood, Ather ;
Golubev, Dmitry S. ;
Roch-Jeune, Isabelle ;
Salles, Philippe ;
Dujardin, Erik .
SMALL, 2008, 4 (06) :716-720
[4]   Electronic structures of graphene edges and nanographene [J].
Enoki, Toshiaki ;
Kobayashi, Yousuke ;
Fukui, Ken-Ichi .
INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 2007, 26 (04) :609-645
[5]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   Nanolithography and manipulation of graphene using an atomic force microscope [J].
Giesbers, A. J. M. ;
Zeitler, U. ;
Neubeck, S. ;
Freitag, F. ;
Novoselov, K. S. ;
Maan, J. C. .
SOLID STATE COMMUNICATIONS, 2008, 147 (9-10) :366-369
[8]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[9]   Irradiation-induced magnetism in graphite: A density functional study [J].
Lehtinen, PO ;
Foster, AS ;
Ma, YC ;
Krasheninnikov, AV ;
Nieminen, RM .
PHYSICAL REVIEW LETTERS, 2004, 93 (18) :187202-1
[10]   Chemically derived, ultrasmooth graphene nanoribbon semiconductors [J].
Li, Xiaolin ;
Wang, Xinran ;
Zhang, Li ;
Lee, Sangwon ;
Dai, Hongjie .
SCIENCE, 2008, 319 (5867) :1229-1232