An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes

被引:865
作者
Liu, Yayuan [1 ]
Lin, Dingchang [1 ]
Yuen, Pak Yan [2 ]
Liu, Kai [1 ]
Xie, Jin [1 ]
Dauskardt, Reinhold H. [1 ]
Cui, Yi [1 ,3 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[3] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
关键词
COMPOSITE PROTECTIVE LAYER; ELECTROCHEMICAL-BEHAVIOR; BATTERIES; MATRIX;
D O I
10.1002/adma.201605531
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An artificial solid electrolyte interphase (SEI) is demonstrated for the efficient and safe operation of a lithium metal anode. Composed of lithium-ion-conducting inorganic nanoparticles within a flexible polymer binder matrix, the rationally designed artificial SEI not only mechanically suppresses lithium dendrite formation but also promotes homogeneous lithium-ion flux, significantly enhancing the efficiency and cycle life of the lithium metal anode.
引用
收藏
页数:8
相关论文
共 39 条
[11]  
Dahn J., 2009, SCAL EN STOR LITH IO
[12]   Ultrasmall Cu3N Nanoparticles: Surfactant-Free Solution-Phase Synthesis, Nitridation Mechanism, and Application for Lithium Storage [J].
Deshmukh, Rupali ;
Zeng, Guobo ;
Tervoort, Elena ;
Staniuk, Malwina ;
Wood, David ;
Niederberger, Markus .
CHEMISTRY OF MATERIALS, 2015, 27 (24) :8282-8288
[13]   Addition of a thin-film inorganic solid electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte [J].
Dudney, NJ .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :176-179
[14]   Covalently Connected Carbon Nanostructures for Current Collectors in Both the Cathode and Anode of Li-S Batteries [J].
Jin, Song ;
Xin, Sen ;
Wang, Linjun ;
Du, Zhenzhen ;
Cao, Lina ;
Chen, Jiafeng ;
Kong, Xianghua ;
Gong, Ming ;
Lu, Junling ;
Zhu, Yanwu ;
Ji, Hengxing ;
Ruoff, Rodney S. .
ADVANCED MATERIALS, 2016, 28 (41) :9094-+
[15]   Metallic anodes for next generation secondary batteries [J].
Kim, Hansu ;
Jeong, Goojin ;
Kim, Young-Ugk ;
Kim, Jae-Hun ;
Park, Cheol-Min ;
Sohn, Hun-Joon .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (23) :9011-9034
[16]   Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition [J].
Kozen, Alexander C. ;
Lin, Chuan-Fu ;
Pearse, Alexander J. ;
Schroeder, Marshall A. ;
Han, Xiaogang ;
Hu, Liangbing ;
Lee, Sang-Bok ;
Rubloff, Gary W. ;
Noked, Malachi .
ACS NANO, 2015, 9 (06) :5884-5892
[17]   Sustainable Redox Mediation for Lithium-Oxygen Batteries by a Composite Protective Layer on the Lithium-Metal Anode [J].
Lee, Dong Jin ;
Lee, Hongkyung ;
Kim, Yun-Jung ;
Park, Jung-Ki ;
Kim, Hee-Tak .
ADVANCED MATERIALS, 2016, 28 (05) :857-863
[18]   A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries [J].
Lee, Hongkyung ;
Lee, Dong Jin ;
Kim, Yun-Jung ;
Park, Jung-Ki ;
Kim, Hee-Tak .
JOURNAL OF POWER SOURCES, 2015, 284 :103-108
[19]   An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes [J].
Li, Nian-Wu ;
Yin, Ya-Xia ;
Yang, Chun-Peng ;
Guo, Yu-Guo .
ADVANCED MATERIALS, 2016, 28 (09) :1853-1858
[20]   Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating [J].
Liang, Zheng ;
Lin, Dingchang ;
Zhao, Jie ;
Lu, Zhenda ;
Liu, Yayuan ;
Liu, Chong ;
Lu, Yingying ;
Wang, Haotian ;
Yan, Kai ;
Tao, Xinyong ;
Cui, Yi .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (11) :2862-2867