Spin-orbit proximity effect in graphene

被引:404
作者
Avsar, A. [1 ,2 ]
Tan, J. Y. [1 ,2 ]
Taychatanapat, T. [1 ,2 ]
Balakrishnan, J. [1 ,2 ]
Koon, G. K. W. [1 ,2 ,3 ]
Yeo, Y. [1 ,2 ]
Lahiri, J. [1 ,2 ]
Carvalho, A. [1 ,2 ]
Rodin, A. S. [4 ]
O'Farrell, E. C. T. [1 ,2 ]
Eda, G. [1 ,2 ]
Castro Neto, A. H. [1 ,2 ]
Oezyilmaz, B. [1 ,2 ,3 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[2] Natl Univ Singapore, Graphene Res Ctr, Singapore 117542, Singapore
[3] Natl Univ Singapore, NanoCore, Singapore 117576, Singapore
[4] Boston Univ, Dept Phys, Boston, MA 02215 USA
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
基金
新加坡国家研究基金会;
关键词
TRANSPORT;
D O I
10.1038/ncomms5875
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development of spintronics devices relies on efficient generation of spin-polarized currents and their electric-field-controlled manipulation. While observation of exceptionally long spin relaxation lengths makes graphene an intriguing material for spintronics studies, electric field modulation of spin currents is almost impossible due to negligible intrinsic spin-orbit coupling of graphene. In this work, we create an artificial interface between monolayer graphene and few-layer semiconducting tungsten disulphide. In these devices, we observe that graphene acquires spin-orbit coupling up to 17 meV, three orders of magnitude higher than its intrinsic value, without modifying the structure of the graphene. The proximity spin-orbit coupling leads to the spin Hall effect even at room temperature, and opens the door to spin field effect transistors. We show that intrinsic defects in tungsten disulphide play an important role in this proximity effect and that graphene can act as a probe to detect defects in semiconducting surfaces.
引用
收藏
页数:6
相关论文
共 32 条
[11]   Quantum resistance metrology using graphene [J].
Janssen, T. J. B. M. ;
Tzalenchuk, A. ;
Lara-Avila, S. ;
Kubatkin, S. ;
Fal'ko, V. I. .
REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (10)
[12]   Electrical detection of spin precession in a metallic mesoscopic spin valve [J].
Jedema, FJ ;
Heersche, HB ;
Filip, AT ;
Baselmans, JJA ;
van Wees, BJ .
NATURE, 2002, 416 (6882) :713-716
[13]   Linear scaling between momentum and spin scattering in graphene [J].
Jozsa, C. ;
Maassen, T. ;
Popinciuc, M. ;
Zomer, P. J. ;
Veligura, A. ;
Jonkman, H. T. ;
van Wees, B. J. .
PHYSICAL REVIEW B, 2009, 80 (24)
[14]   Quantum spin Hall effect in graphene [J].
Kane, CL ;
Mele, EJ .
PHYSICAL REVIEW LETTERS, 2005, 95 (22)
[15]   Tight-binding theory of the spin-orbit coupling in graphene [J].
Konschuh, Sergej ;
Gmitra, Martin ;
Fabian, Jaroslav .
PHYSICAL REVIEW B, 2010, 82 (24)
[16]   Strong spin-orbit splitting in graphene with adsorbed Au atoms [J].
Ma, Dongwei ;
Li, Zhongyao ;
Yang, Zhongqin .
CARBON, 2012, 50 (01) :297-305
[17]   Long Spin Relaxation Times in Wafer Scale Epitaxial Graphene on SiC(0001) [J].
Maassen, Thomas ;
van den Berg, J. Jasper ;
IJbema, Natasja ;
Fromm, Felix ;
Seyller, Thomas ;
Yakimova, Rositza ;
van Wees, Bart J. .
NANO LETTERS, 2012, 12 (03) :1498-1502
[18]   Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature [J].
Mayorov, Alexander S. ;
Gorbachev, Roman V. ;
Morozov, Sergey V. ;
Britnell, Liam ;
Jalil, Rashid ;
Ponomarenko, Leonid A. ;
Blake, Peter ;
Novoselov, Kostya S. ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Geim, A. K. .
NANO LETTERS, 2011, 11 (06) :2396-2399
[19]   Elliot-Yafet Mechanism in Graphene [J].
Ochoa, H. ;
Castro Neto, A. H. ;
Guinea, F. .
PHYSICAL REVIEW LETTERS, 2012, 108 (20)
[20]   Manipulation of Spin Transport in Graphene by Surface Chemical Doping [J].
Pi, K. ;
Han, Wei ;
McCreary, K. M. ;
Swartz, A. G. ;
Li, Yan ;
Kawakami, R. K. .
PHYSICAL REVIEW LETTERS, 2010, 104 (18)