Spin-Orbit Coupling, Quantum Dots, and Qubits in Monolayer Transition Metal Dichalcogenides

被引:393
作者
Kormanyos, Andor [1 ]
Zolyomi, Viktor [2 ]
Drummond, Neil D. [2 ]
Burkard, Guido [1 ]
机构
[1] Univ Konstanz, Dept Phys, D-78464 Constance, Germany
[2] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
来源
PHYSICAL REVIEW X | 2014年 / 4卷 / 01期
关键词
VALLEY POLARIZATION; MOS2; PHOTOLUMINESCENCE; TRANSISTORS; COHERENCE; MOBILITY; WS2;
D O I
10.1103/PhysRevX.4.011034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive an effective Hamiltonian that describes the dynamics of electrons in the conduction band of monolayer transition metal dichalcogenides (TMDC) in the presence of perpendicular electric and magnetic fields. We discuss in detail both the intrinsic and the Bychkov-Rashba spin-orbit coupling induced by an external electric field. We point out interesting differences in the spin-split conduction band between different TMDC compounds. An important consequence of the strong intrinsic spin-orbit coupling is an effective out-of-plane g factor for the electrons that differs from the free-electron g factor g similar or equal to 2. We identify a new term in the Hamiltonian of the Bychkov-Rashba spin-orbit coupling that does not exist in III-V semiconductors. Using first-principles calculations, we give estimates of the various parameters appearing in the theory. Finally, we consider quantum dots formed in TMDC materials and derive an effective Hamiltonian that allows us to calculate the magnetic field dependence of the bound states in the quantum dots. We find that all states are both valley and spin split, which suggests that these quantum dots could be used as valley-spin filters. We explore the possibility of using spin and valley states in TMDCs as quantum bits, and conclude that, due to the relatively strong intrinsic spin-orbit splitting in the conduction band, the most realistic option appears to be a combined spin-valley (Kramers) qubit at low magnetic fields.
引用
收藏
页数:16
相关论文
共 70 条
[1]   Spin-orbit coupling effects on quantum transport in lateral semiconductor dots [J].
Aleiner, IL ;
Fal'ko, VI .
PHYSICAL REVIEW LETTERS, 2001, 87 (25) :256801-1
[2]   Gate-defined quantum confinement in suspended bilayer graphene [J].
Allen, M. T. ;
Martin, J. ;
Yacoby, A. .
NATURE COMMUNICATIONS, 2012, 3
[3]   High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects [J].
Bao, Wenzhong ;
Cai, Xinghan ;
Kim, Dohun ;
Sridhara, Karthik ;
Fuhrer, Michael S. .
APPLIED PHYSICS LETTERS, 2013, 102 (04)
[4]  
Baugher B. W. H., ARXIV13100452
[5]   Quantitative Determination of the Band Gap of WS2 with Ambipolar Ionic Liquid-Gated Transistors [J].
Braga, Daniele ;
Lezama, Ignacio Gutierrez ;
Berger, Helmuth ;
Morpurgo, Alberto F. .
NANO LETTERS, 2012, 12 (10) :5218-5223
[6]  
BYCHKOV YA, 1984, JETP LETT+, V39, P78
[7]   Magnetic control of the valley degree of freedom of massive Dirac fermions with application to transition metal dichalcogenides [J].
Cai, Tianyi ;
Yang, Shengyuan A. ;
Li, Xiao ;
Zhang, Fan ;
Shi, Junren ;
Yao, Wang ;
Niu, Qian .
PHYSICAL REVIEW B, 2013, 88 (11)
[8]   Valley-selective circular dichroism of monolayer molybdenum disulphide [J].
Cao, Ting ;
Wang, Gang ;
Han, Wenpeng ;
Ye, Huiqi ;
Zhu, Chuanrui ;
Shi, Junren ;
Niu, Qian ;
Tan, Pingheng ;
Wang, Enge ;
Liu, Baoli ;
Feng, Ji .
NATURE COMMUNICATIONS, 2012, 3
[9]   Tight-binding model and direct-gap/indirect-gap transition in single-layer and multilayer MoS2 [J].
Cappelluti, E. ;
Roldan, R. ;
Silva-Guillen, J. A. ;
Ordejon, P. ;
Guinea, F. .
PHYSICAL REVIEW B, 2013, 88 (07)
[10]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162