Nanoimprinted passive optical devices

被引:45
作者
Seekamp, J [1 ]
Zankovych, S
Helfer, AH
Maury, P
Torres, CMS
Böttger, G
Liguda, C
Eich, M
Heidari, B
Montelius, L
Ahopelto, J
机构
[1] Berg Univ Gesamthsch Wuppertal, Inst Mat Sci, D-42097 Wuppertal, Germany
[2] Berg Univ Gesamthsch Wuppertal, Dept Elect & Informat Engn, D-42097 Wuppertal, Germany
[3] Tech Univ Hamburg, D-21073 Hamburg, Germany
[4] Lund Univ, Solid State Phys Nanometer Consortium, S-22100 Lund, Sweden
[5] VTT Ctr Microelect, FIN-02044 Espoo, Finland
关键词
D O I
10.1088/0957-4484/13/5/307
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report on the feasibility and process parameters of nanoimprint lithography to fabricate low refractive index passive optical devices. Diffraction gratings printed in polymethylmethacrylate (PMMA) exhibit a sharp dispersion with a full width at half maximum of about 20 nm. Waveguides were printed in polystyrene (PS) on silicon oxide and had losses between 8-20 dB cm(-1) at wavelengths between 650-400 nm, respectively. Finally, one-dimensional photonic structures were also printed in PS and their transmission and morphology characterized. The expected Bragg peak was observed in transmission and atomic force microscopy images have shown a good pattern transfer. A square lattice was printed in PMMA and more than 40 print cycles were obtained, i.e., potentially more than 1000 imprints from one master stamp.
引用
收藏
页码:581 / 586
页数:6
相关论文
共 12 条
[1]  
Cedeño CC, 2002, MICROELECTRON ENG, V61-2, P25, DOI 10.1016/S0167-9317(02)00505-1
[2]   Imprint lithography with 25-nanometer resolution [J].
Chou, SY ;
Krauss, PR ;
Renstrom, PJ .
SCIENCE, 1996, 272 (5258) :85-87
[3]   Sub-10 nm imprint lithography and applications [J].
Chou, SY ;
Krauss, PR ;
Zhang, W ;
Guo, LJ ;
Zhuang, L .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1997, 15 (06) :2897-2904
[4]   High density fluorocarbon plasma etching of new resists suitable for nano-imprint lithography [J].
Gaboriau, F ;
Peignon, MC ;
Barreau, A ;
Turban, G ;
Cardinaud, C ;
Pfeiffer, K ;
Bleidiessel, G ;
Grützner, G .
MICROELECTRONIC ENGINEERING, 2000, 53 (1-4) :501-505
[5]   Polymer issues in nanoimprinting technique [J].
Gottschalch, F ;
Hoffmann, T ;
Torres, CMS ;
Schulz, H ;
Scheer, HC .
SOLID-STATE ELECTRONICS, 1999, 43 (06) :1079-1083
[6]   Step & stamp imprint lithography using a commercial flip chip bonder [J].
Haatainen, T ;
Ahopelto, J ;
Gruetzner, G ;
Fink, M ;
Pfeiffer, K .
EMERGING LITHOGRAPHIC TECHNOLOGIES IV, 2000, 3997 :874-880
[7]   Nanoimprint lithography at the 6 in. wafer scale [J].
Heidari, B ;
Maximov, I ;
Montelius, L .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2000, 18 (06) :3557-3560
[8]   Flow behaviour of thin polymer films used for hot embossing lithography [J].
Heyderman, LJ ;
Schift, H ;
David, C ;
Gobrecht, J ;
Schweizer, T .
MICROELECTRONIC ENGINEERING, 2000, 54 (3-4) :229-245
[9]   Polymer photonic crystal slab waveguides [J].
Liguda, C ;
Böttger, G ;
Kuligk, A ;
Blum, R ;
Eich, M ;
Roth, H ;
Kunert, J ;
Morgenroth, W ;
Elsner, H ;
Meyer, HG .
APPLIED PHYSICS LETTERS, 2001, 78 (17) :2434-2436
[10]   Master replication into thermosetting polymers for nanoimprinting [J].
Schulz, H ;
Lyebyedyev, D ;
Scheer, HC ;
Pfeiffer, K ;
Bleidiessel, G ;
Grützner, G ;
Ahopelto, J .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2000, 18 (06) :3582-3585