Proton radiation hardness of single-nanowire transistors using robust organic gate nanodielectrics

被引:29
作者
Ju, Sanghyun
Lee, Kangho
Janes, David B. [1 ]
Dwivedi, Ramesh C.
Baffour-Awuah, Habibah
Wilkins, R.
Yoon, Myung-Han
Facchetti, Antonio
Mark, Tobin J.
机构
[1] Purdue Univ, Sch Elect & Comp Engn, Inst Nanoelect & Comp, W Lafayette, IN 47907 USA
[2] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[3] Prairie View A&M Univ, NASA, CARR, Prairie View, TX USA
[4] Prairie View A&M Univ, Dept Elect Engn, Prairie View, TX USA
[5] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[6] Northwestern Univ, Mat Res Ctr, Evanston, IL 60208 USA
[7] Northwestern Univ, Inst Nanoelect & Comp, Evanston, IL 60208 USA
基金
美国国家航空航天局;
关键词
D O I
10.1063/1.2336744
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this contribution, the radiation tolerance of single ZnO nanowire field-effect transistors (NW-FETs) fabricated with a self-assembled superlattice (SAS) gate insulator is investigated and compared with that of ZnO NW-FETs fabricated with a 60 nm SiO2 gate insulator. A total-radiation dose study was performed using 10 MeV protons at doses of 5.71 and 285 krad(Si). The threshold voltage (V-th) of the SAS-based ZnO NW-FETs is not shifted significantly following irradiation at these doses. In contrast, V-th parameters of the SiO2-based ZnO NW-FETs display average shifts of similar to-4.0 and similar to-10.9 V for 5.71 and 285 krad(Si) H+ irradiation, respectively. In addition, little change is observed in the subthreshold characteristics (off current, subthreshold slope) of the SAS-based ZnO NW-FETs following H+ irradiation. These results strongly argue that the bulk oxide trap density and interface trap density formed within the SAS and/or at the SAS-ZnO NW interface during H+ irradiation are significantly lower than those for the corresponding SiO2 gate dielectrics. The radiation-robust SAS-based ZnO NW-FETs are thus promising candidates for future space-based applications in electronics and flexible displays. (c) 2006 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 14 条
[1]  
FEETWOOD DM, 2003, IEEE T ELECTRON DEV, V50, P483
[2]   Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells [J].
Hara, K ;
Horiguchi, T ;
Kinoshita, T ;
Sayama, K ;
Sugihara, H ;
Arakawa, H .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2000, 64 (02) :115-134
[3]  
HO PKH, 2003, SCIENCE, V299, P1881
[4]   Radiation effects and hardening of MOS technology: Devices and circuits [J].
Hughes, HL ;
Benedetto, JM .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2003, 50 (03) :500-521
[5]   Plastic transistors in active-matrix displays - The handling of grey levels by these large displays paves the way for electronic paper. [J].
Huitema, HEA ;
Gelinck, GH ;
van der Putten, JBPH ;
Kuijk, KE ;
Hart, CM ;
Cantatore, E ;
Herwig, PT ;
van Breemen, AJJM ;
de Leeuw, DM .
NATURE, 2001, 414 (6864) :599-599
[6]   Organic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates [J].
Hur, SH ;
Yoon, MH ;
Gaur, A ;
Shim, M ;
Facchetti, A ;
Marks, TJ ;
Rogers, JA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (40) :13808-13809
[7]   Low operating voltage single ZnO nanowire field-effect transistors enabled by self-assembled organic gate nanodielectrics [J].
Ju, SH ;
Lee, K ;
Janes, DB .
NANO LETTERS, 2005, 5 (11) :2281-2286
[8]   Total ionizing dose effects in MOS oxides and devices [J].
Oldham, TR ;
McLean, FB .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2003, 50 (03) :483-499
[9]   Comparison of charge yield in MOS devices for different radiation sources [J].
Paillet, P ;
Schwank, JR ;
Shaneyfelt, MR ;
Ferlet-Cavrois, V ;
Jones, RL ;
Flament, O ;
Blackmore, EW .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2002, 49 (06) :2656-2661
[10]   Chemistry of NO2 on CeO2 and MgO:: Experimental and theoretical studies on the formation of NO3 [J].
Rodriguez, JA ;
Jirsak, T ;
Sambasivan, S ;
Fischer, D ;
Maiti, A .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (22) :9929-9939