Sub-wavelength nanofluidics in photonic crystal sensors

被引:98
作者
Huang, Min [1 ,2 ]
Yanik, Ahmet Ali [1 ,2 ]
Chang, Tsung-Yao [4 ]
Altug, Hatice [1 ,2 ,3 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[2] Boston Univ, Photon Ctr, Boston, MA 02215 USA
[3] Div Mat Sci & Engn, Boston, MA 02215 USA
[4] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
来源
OPTICS EXPRESS | 2009年 / 17卷 / 26期
基金
美国国家科学基金会;
关键词
SURFACE-PLASMON RESONANCE; BIOSENSOR;
D O I
10.1364/OE.17.024224
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce a novel sensor scheme combining nano-photonics and nano-fluidics on a single platform through the use of free-standing photonic crystals. By harnessing nano-scale openings, we theoretically and experimentally demonstrate that both fluidics and light can be manipulated at sub-wavelength scales. Compared to the conventional fluidic channels, we actively steer the convective flow through the nanohole openings for effective delivery of the analytes to the sensor surface. We apply our method to detect refractive index changes in aqueous solutions. Bulk measurements indicate that active delivery of the convective flow results in better sensitivities. The sensitivity of the sensor reaches 510 nm/RIU for resonance located around 850 nm with a line-width of similar to 10 nm in solution. Experimental results are matched very well with numerical simulations. We also show that cross-polarization measurements can be employed to further improve the detection limit by increasing the signal-to-noise ratio. (C) 2009 Optical Society of America
引用
收藏
页码:24224 / 24233
页数:10
相关论文
共 28 条
[1]   Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays [J].
Altug, H ;
Vuckovic, J .
OPTICS LETTERS, 2005, 30 (09) :982-984
[2]   Label-free, single-molecule detection with optical microcavities [J].
Armani, Andrea M. ;
Kulkarni, Rajan P. ;
Fraser, Scott E. ;
Flagan, Richard C. ;
Vahala, Kerry J. .
SCIENCE, 2007, 317 (5839) :783-787
[3]   Fabry-Peacuterot nanocavities in multilayered plasmonic crystals for enhanced biosensing [J].
Artar, Alp ;
Yanik, Ahmet Ali ;
Altug, Hatice .
APPLIED PHYSICS LETTERS, 2009, 95 (05)
[4]   Convective flow effects on DNA biosensors [J].
Bishop, J. ;
Blair, S. ;
Chagovetz, A. .
BIOSENSORS & BIOELECTRONICS, 2007, 22 (9-10) :2192-2198
[5]   Sensitivity model for predicting photonic crystal biosensor performance [J].
Block, Ian D. ;
Ganesh, Nikhil ;
Lu, Meng ;
Cunningham, Brian T. .
IEEE SENSORS JOURNAL, 2008, 8 (3-4) :274-280
[6]   Sensitive disk resonator photonic biosensor [J].
Boyd, RW ;
Heebner, JE .
APPLIED OPTICS, 2001, 40 (31) :5742-5747
[7]   Nanoscale silicon microcavities for biosensing [J].
Chan, S ;
Li, Y ;
Rothberg, LJ ;
Miller, BL ;
Fauchet, PM .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2001, 15 (1-2) :277-282
[8]   Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity [J].
Chow, E ;
Grot, A ;
Mirkarimi, LW ;
Sigalas, M ;
Girolami, G .
OPTICS LETTERS, 2004, 29 (10) :1093-1095
[9]   On-chip surface-based detection with nanohole arrays [J].
De Leebeeck, Angela ;
Kumar, L. K. Swaroop ;
de Lange, Victoria ;
Sinton, David ;
Gordon, Reuven ;
Brolo, Alexandre G. .
ANALYTICAL CHEMISTRY, 2007, 79 (11) :4094-4100
[10]   Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale [J].
Erickson, David ;
Mandal, Sudeep ;
Yang, Allen H. J. ;
Cordovez, Bernardo .
MICROFLUIDICS AND NANOFLUIDICS, 2008, 4 (1-2) :33-52