Fabrication of semiconducting YBaCuO surface-micromachined bolometer arrays

被引:39
作者
Travers, CM
Jahanzeb, A
Butler, DP
CelikButler, Z
机构
[1] Department of Electrical Engineering, Southern Methodist University, Dallas
[2] Southern Methodist University (SMU), Dallas, TX
[3] Transmiss. Systems Engineering Group, MCI Telecommunications
[4] Solid State Technol. Grp. Elec. Eng., SMU
[5] Paul Scherrer Institut (PSIZ), Zurich
[6] University of Wisconsin, Madison, WI
[7] University of Toronto, Toronto, Ont.
[8] University of Rochester, Rochester, NY
[9] Electrical Engineering Department, Southern Methodist University (SMU), Dallas, TX
[10] Bogaziçi University, Istanbul
[11] Eta Kappa Nu, American Physical Society
基金
美国国家科学基金会;
关键词
infrared detection; microbolometer; yttrium barium copper oxide;
D O I
10.1109/84.623117
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Thermal infrared detectors require thermal isolation to permit the infrared-sensitive material to integrate the incident photon energy and thereby obtain high responsivity and detectivity, This paper describes the fabrication of semiconducting YBaCuO microbolometer arrays into thermal isolation structures by employing Si surface-micromachining techniques. An isotropic HF:HNO3 etch was used to remove the underlying Si substrate from the front-side of the wafer and suspend SiO2 membranes into 1 x 10 pixel-array structures, The infrared-sensitive material, YBaCuO, was subsequently deposited onto the thermal isolation structures and patterned to form the detector arrays, The high-temperature coefficient of resistance and low noise of semiconducting YBaCuO at room temperature is attractive for uncooled infrared detection, The fabrication process was conducted entirely at room temperature, In this manner, infrared detectors are fabricated in a process that is compatible with CMOS technology to allow for the integration with on-chip signal processing circuitry, The end result is low-cost infrared-detector arrays for night vision in a variety of applications including transportation and security, Preliminary results show a temperature coefficient of resistance above 3%, voltage responsivity close to 10(4) V/W, and detectivity over 10(7) cm.Hz(1/2)/W bias current of 0.79 mu A.
引用
收藏
页码:271 / 276
页数:6
相关论文
共 23 条
[1]   EPITAXIAL YBA2CU3O7-DELTA AIR-BRIDGE MICROBOLOMETERS ON SILICON SUBSTRATES [J].
BARTH, R ;
SIEWERT, J ;
JAEKEL, C ;
SPANGENBERG, B ;
KURZ, H ;
PRUSSEIT, W ;
UTZ, B ;
WOLF, H .
JOURNAL OF APPLIED PHYSICS, 1995, 78 (06) :4218-4221
[2]  
FOOTE MC, 1994, P SOC PHOTO-OPT INS, V2159, P2, DOI 10.1117/12.176130
[3]   Design and performance of the ULTRA 320x240 uncooled focal plane array and sensor [J].
Herring, RJ ;
Howard, PE .
INFRARED DETECTORS AND FOCAL PLANE ARRAYS IV, 1996, 2746 :2-12
[4]   SURFACE MICROMACHINING FOR MICROSENSORS AND MICROACTUATORS [J].
HOWE, RT .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1988, 6 (06) :1809-1813
[5]   Micromachined, uncooled, VO2-based, IR bolometer-arrays [J].
Jerominek, H ;
Picard, F ;
Swart, NR ;
Renaud, M ;
Levesque, M ;
Lehoux, M ;
Castonguay, JS ;
Pelletier, M ;
Bilodeau, G ;
Audet, D ;
Pope, TD ;
Lambert, P .
INFRARED DETECTORS AND FOCAL PLANE ARRAYS IV, 1996, 2746 :60-71
[6]   YBa2Cu3O7 SUPERCONDUCTOR MICROBOLOMETER ARRAYS FABRICATED BY SILICON MICROMACHINING [J].
Johnson, B. R. ;
Ohnstein, T. ;
Han, C. J. ;
Higashi, R. ;
Kruse, P. W. ;
Wood, R. A. ;
Marsh, H. ;
Dunham, S. B. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1993, 3 (01) :2856-2859
[7]   Uncooled infrared sensor with digital focal plane array [J].
Marshall, C ;
Butler, N ;
Blackwell, R ;
Murphy, R ;
Breen, T .
INFRARED DETECTORS AND FOCAL PLANE ARRAYS IV, 1996, 2746 :23-31
[8]   Amber's uncooled microbolometer LWIR camera [J].
Meyer, B ;
Cannata, R ;
Stout, A ;
Gin, A ;
Taylor, P ;
Woodbury, E ;
Deffner, J ;
Ennerson, F .
INFRARED DETECTORS AND FOCAL PLANE ARRAYS IV, 1996, 2746 :13-22
[9]   EXTENDED FUNCTION OF A HIGH-T-C TRANSITION EDGE BOLOMETER ON A MICROMACHINED SI MEMBRANE [J].
NEFF, H ;
LAUKEMPER, J ;
HEFLE, G ;
BURNUS, M ;
HEIDENBLUT, T ;
MICHALKE, W ;
STEINBEISS, E .
APPLIED PHYSICS LETTERS, 1995, 67 (13) :1917-1919
[10]   SILICON AS A MECHANICAL MATERIAL [J].
PETERSEN, KE .
PROCEEDINGS OF THE IEEE, 1982, 70 (05) :420-457