Fructosyltransferase and invertase genes evolved by gene duplication and rearrangements: rice, perennial ryegrass, and wheat gene families

被引:18
作者
Francki, Michael G.
Walker, Esther
Forster, John W.
Spangenberg, German
Appels, Rudi
机构
[1] Western Australia Dept Agr, S Perth, WA 6151, Australia
[2] Value Added Wheat Cooperat Res Ctr, N Ryde, NSW 2113, Australia
[3] Murdoch Univ, Australia State Agr Biotechnol Ctr, Murdoch, WA 6983, Australia
[4] Murdoch Univ, Ctr Biotechnol, Murdoch, WA 6983, Australia
[5] Victorian AgriBiosci Ctr, Primary Ind Victoria, Bundoora, Vic 3083, Australia
[6] Mol Plant Breeding Cooperat Res Ctr, Bundoora, Vic 3083, Australia
关键词
fructosyltransferase; invertase; comparative genomics; gene rearrangement; genome evolution;
D O I
10.1139/G06-066
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The invertase enzyme family is responsible for carbohydrate metabolism in rice, perennial ryegrass, and wheat. Fructan molecules accumulate in cell vacuoles of perennial ryegrass and wheat and are associated with abiotic stress tolerance. High levels of amino acid similarity between the fructosyltransferases responsible for fructan accumulation indicates that the), may have evolved from invertase-like ancestral genes. In this study, we have applied comparative genomics to determine the mechanisms that lead to the evolution of fructosytransferase and invertase genes in rice, perennial ryegrass, and wheat. Duplications and rearrangements have been inferred to generate variant forms of the rice invertases since divergence from a common grass progenitor. The occurrence of multiple copies of fructosyltransferase genes indicated that duplication events continued during evolution of the wheat and perennial ryegrass lineages. Further gene rearrangements were evident in perennial ryegrass genes, albeit at a reduced level compared with the rice invertases. Gene orthologs were largely static after duplication during evolution of the wheat lineage. This study details evolutionary events that contribute to fructosyltransferase and invertase gene variation in grasses.
引用
收藏
页码:1081 / 1091
页数:11
相关论文
共 25 条
[1]   A look through cereal genomics PREFACE [J].
Appels, R. .
FUNCTIONAL & INTEGRATIVE GENOMICS, 2002, 2 (1-2) :1-3
[2]   Isolation and characterisation of a sucrose:sucrose 1-fructosyltransferase gene from perennial ryegrass (Lolium perenne) [J].
Chalmers, J ;
Johnson, X ;
Lidgett, A ;
Spangenberg, G .
JOURNAL OF PLANT PHYSIOLOGY, 2003, 160 (11) :1385-1391
[3]   Molecular genetics of fructan metabolism in perennial ryegrass [J].
Chalmers, J ;
Lidgett, A ;
Cummings, N ;
Cao, YY ;
Forster, J ;
Spangenberg, G .
PLANT BIOTECHNOLOGY JOURNAL, 2005, 3 (05) :459-474
[4]   A 2600-locus chromosome bin map of wheat homoeologous group 2 reveals interstitial gene-rich islands and colinearity with rice [J].
Conley, EJ ;
Nduati, V ;
Gonzalez-Hernandez, JL ;
Mesfin, A ;
Trudeau-Spanjers, M ;
Chao, S ;
Lazo, GR ;
Hummel, DD ;
Anderson, OD ;
Qi, LL ;
Gill, BS ;
Echalier, B ;
Linkiewicz, AM ;
Dubcovsky, J ;
Akhunov, ED ;
Dyorák, J ;
Peng, JH ;
Lapitan, NLV ;
Pathan, MS ;
Nguyen, HT ;
Ma, XF ;
Miftahudin ;
Gustafson, JP ;
Greene, RA ;
Sorrells, ME ;
Hossain, G ;
Kalavacharla, V ;
Kianian, SF ;
Sidhu, K ;
Dijbirligi, M ;
Gill, KS ;
Choi, DW ;
Fenton, RD ;
Close, TJ ;
McGuire, PE ;
Qualset, CO ;
Anderson, JA .
GENETICS, 2004, 168 (02) :625-637
[5]   The deletion stocks of common wheat [J].
Endo, TR ;
Gill, BS .
JOURNAL OF HEREDITY, 1996, 87 (04) :295-307
[7]   Comparative organization of wheat homoeologous group 3S and 7L using wheat-rice synteny and identification of potential markers for genes controlling xanthophyll content in wheat [J].
Francki, Michael ;
Carter, Meredith ;
Ryan, Karon ;
Hunter, Adam ;
Bellgard, Matthew ;
Appels, Rudi .
FUNCTIONAL & INTEGRATIVE GENOMICS, 2004, 4 (02) :118-130
[8]   A draft sequence of the rice genome (Oryza sativa L. ssp japonica) [J].
Goff, SA ;
Ricke, D ;
Lan, TH ;
Presting, G ;
Wang, RL ;
Dunn, M ;
Glazebrook, J ;
Sessions, A ;
Oeller, P ;
Varma, H ;
Hadley, D ;
Hutchinson, D ;
Martin, C ;
Katagiri, F ;
Lange, BM ;
Moughamer, T ;
Xia, Y ;
Budworth, P ;
Zhong, JP ;
Miguel, T ;
Paszkowski, U ;
Zhang, SP ;
Colbert, M ;
Sun, WL ;
Chen, LL ;
Cooper, B ;
Park, S ;
Wood, TC ;
Mao, L ;
Quail, P ;
Wing, R ;
Dean, R ;
Yu, YS ;
Zharkikh, A ;
Shen, R ;
Sahasrabudhe, S ;
Thomas, A ;
Cannings, R ;
Gutin, A ;
Pruss, D ;
Reid, J ;
Tavtigian, S ;
Mitchell, J ;
Eldredge, G ;
Scholl, T ;
Miller, RM ;
Bhatnagar, S ;
Adey, N ;
Rubano, T ;
Tusneem, N .
SCIENCE, 2002, 296 (5565) :92-100
[9]   Structure, evolution, and expression of the two invertase gene families of rice [J].
Ji, XM ;
Van den Ende, W ;
Van Laere, A ;
Cheng, SH ;
Bennett, J .
JOURNAL OF MOLECULAR EVOLUTION, 2005, 60 (05) :615-634
[10]   An active DNA transposon family in rice [J].
Jiang, N ;
Bao, ZR ;
Zhang, XY ;
Hirochika, H ;
Eddy, SR ;
McCouch, SR ;
Wessler, SR .
NATURE, 2003, 421 (6919) :163-167