Leaf sequencing algorithms for segmented multileaf collimation

被引:54
作者
Kamath, S [1 ]
Sahni, S
Li, J
Palta, J
Ranka, S
机构
[1] Univ Florida, Dept Comp & Informat Sci, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Radiat Oncol, Gainesville, FL USA
关键词
BEAM-INTENSITY MODULATION; CONFORMAL RADIOTHERAPY; GENERATION; COMPENSATION; PROFILES; THERAPY; FIELDS;
D O I
10.1088/0031-9155/48/3/303
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The delivery of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation delivery. It is imperative that the fluence map delivered using the leaf sequence file is as close as possible to the fluence map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf sequencing algorithms for segmental multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation constraint and leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bidirectional movement of the MLC leaves.
引用
收藏
页码:307 / 324
页数:18
相关论文
共 17 条
[1]   REALIZATION AND VERIFICATION OF 3-DIMENSIONAL CONFORMAL RADIOTHERAPY WITH MODULATED FIELDS [J].
BORTFELD, T ;
BOYER, AL ;
SCHLEGEL, W ;
KAHLER, DL ;
WALDRON, TJ .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1994, 30 (04) :899-908
[2]   X-RAY FIELD COMPENSATION WITH MULTILEAF COLLIMATORS [J].
BORTFELD, TR ;
KAHLER, DL ;
WALDRON, TJ ;
BOYER, AL .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1994, 28 (03) :723-730
[3]  
Boyer AL, 1997, PROCEEDINGS OF THE XIITH INTERNATIONAL CONFERENCE ON THE USE OF COMPUTERS IN RADIATION THERAPY, P13
[4]   Intensity-modulated radiotherapy: Current status and issues of interest [J].
Boyer, AL ;
Butler, EB ;
DiPetrillo, TA ;
Engler, MJ ;
Fraass, B ;
Grant, W ;
Ling, CC ;
Low, DA ;
Mackie, TR ;
Mohan, R ;
Purdy, JA ;
Roach, M ;
Rosenman, JG ;
Verhey, LJ ;
Wong, JW ;
Cumberlin, RL ;
Stone, H ;
Palta, JR .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2001, 51 (04) :880-914
[5]   Generation of discrete beam-intensity modulation by dynamic multileaf collimation under minimum leaf separation constraints [J].
Convery, DJ ;
Webb, S .
PHYSICS IN MEDICINE AND BIOLOGY, 1998, 43 (09) :2521-2538
[6]   THE GENERATION OF INTENSITY-MODULATED FIELDS FOR CONFORMAL RADIOTHERAPY BY DYNAMIC COLLIMATION [J].
CONVERY, DJ ;
ROSENBLOOM, ME .
PHYSICS IN MEDICINE AND BIOLOGY, 1992, 37 (06) :1359-1374
[7]   Beam characteristics of a retrofitted double-focused multileaf collimator [J].
Das, IJ ;
Desobry, GE ;
McNeeley, SW ;
Cheng, EC ;
Schultheiss, TE .
MEDICAL PHYSICS, 1998, 25 (09) :1676-1684
[8]   Leaf trajectory calculation for dynamic multileaf collimation to realize optimized fluence profiles [J].
Dirkx, MLP ;
Heijmen, BJM ;
van Santvoort, JPC .
PHYSICS IN MEDICINE AND BIOLOGY, 1998, 43 (05) :1171-1184
[9]   Estimates of whole-body dose equivalent produced by beam intensity modulated conformal therapy [J].
Followill, D ;
Geis, P ;
Boyer, A .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1997, 38 (03) :667-672
[10]   THE DESIGN AND PERFORMANCE-CHARACTERISTICS OF A MULTILEAF COLLIMATOR [J].
JORDAN, TJ ;
WILLIAMS, PC .
PHYSICS IN MEDICINE AND BIOLOGY, 1994, 39 (02) :231-251