Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix

被引:219
作者
Mata, Alvaro [1 ]
Geng, Yanbiao [1 ]
Henrikson, Karl J. [2 ]
Aparicio, Conrado [1 ]
Stock, Stuart R. [3 ]
Satcher, Robert L. [4 ,5 ]
Stupp, Samuel I. [1 ,4 ,6 ,7 ]
机构
[1] Northwestern Univ, Inst BioNanotechnol Med, Chicago, IL 60611 USA
[2] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA
[3] Northwestern Univ, Dept Mol Pharmacol & Biol Chem, Chicago, IL 60611 USA
[4] Northwestern Univ, Feinberg Sch Med, Chicago, IL 60611 USA
[5] Univ Texas MD Anderson Canc Ctr, Dept Orthopaed Oncol, Houston, TX 77030 USA
[6] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[7] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Peptide amphiphiles; Bone scaffolds; Bone regeneration; Biomineralization; Regenerative medicine; Biomaterials; MESENCHYMAL STEM-CELLS; PEPTIDE-AMPHIPHILE NANOFIBERS; ARTIFICIAL BONE; GENE-EXPRESSION; DIFFERENTIATION; IMPLANTS; DEFECTS; PHOSPHOPHORYN; BIOMATERIALS; SCAFFOLD;
D O I
10.1016/j.biomaterials.2010.04.013
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Rapid bone regeneration within a three-dimensional defect without the use of bone grafts, exogenous growth factors, or cells remains a major challenge. We report here on the use of self-assembling peptide nanostructured gels to promote bone regeneration that have the capacity to mineralize in biomimetic fashion. The main molecular design was the use of phosphoserine residues in the sequence of a peptide amphiphile known to nucleate hydroxyapatite crystals on the surfaces of nanofibers. We tested the system in a rat femoral critical-size defect by placing pre-assembled nanofiber gels in a 5 mm gap and analyzed bone formation with micro-computed tomography and histology. We found within 4 weeks significantly higher bone formation relative to controls lacking phosphorylated residues and comparable bone formation to that observed in animals treated with a clinically used allogenic bone matrix. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6004 / 6012
页数:9
相关论文
共 59 条
[11]   Bone sialoprotein [J].
Ganss, B ;
Kim, RH ;
Sodek, J .
CRITICAL REVIEWS IN ORAL BIOLOGY & MEDICINE, 1999, 10 (01) :79-98
[12]   The carboxyl-terminal domain of phosphophoryn contains unique extended triplet amino acid repeat sequences forming ordered carboxyl-phosphate interaction ridges that may be essential in the biomineralization process [J].
George, A ;
Bannon, L ;
Sabsay, B ;
Dillon, JW ;
Malone, J ;
Veis, A ;
Jenkins, NA ;
Gilbert, DJ ;
Copeland, NG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (51) :32869-32873
[13]   Bone substitutes: An update [J].
Giannoudis, PV ;
Dinopoulos, H ;
Tsiridis, E .
INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2005, 36 :20-27
[14]   Encapsulation of pyrene within self-assembled peptide amphiphile nanofibers [J].
Guler, MO ;
Claussen, RC ;
Stupp, SI .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (42) :4507-4512
[15]   Branched peptide-amphiphiles as self-assembling coatings for tissue engineering scaffolds [J].
Harrington, Daniel A. ;
Cheng, Earl Y. ;
Guler, Mustafa O. ;
Lee, Leslie K. ;
Donovan, Jena L. ;
Claussen, Randal C. ;
Stupp, Samuel I. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2006, 78A (01) :157-167
[16]   Self-assembly and mineralization of peptide-amphiphile nanofibers [J].
Hartgerink, JD ;
Beniash, E ;
Stupp, SI .
SCIENCE, 2001, 294 (5547) :1684-1688
[17]   Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials [J].
Hartgerink, JD ;
Beniash, E ;
Stupp, SI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) :5133-5138
[18]   Phosphorylation of phosphophoryn is crucial for its function as a mediator of biomineralization [J].
He, G ;
Ramachandran, A ;
Dahl, T ;
George, S ;
Schultz, D ;
Cookson, D ;
Veis, A ;
George, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (39) :33109-33114
[19]   Bone voyage: An expedition into the molecular and cellular parameters affecting bone graft fate [J].
Helms, J. A. ;
Amasha, R. R. ;
Leucht, P. .
BONE, 2007, 41 (04) :479-485
[20]   RGD modified polymers: biomaterials for stimulated cell adhesion and beyond [J].
Hersel, U ;
Dahmen, C ;
Kessler, H .
BIOMATERIALS, 2003, 24 (24) :4385-4415