Inference in the age of big data: Future perspectives on neuroscience

被引:125
作者
Bzdok, Danilo [1 ,2 ,3 ,4 ]
Yeo, B. T. Thomas [5 ,6 ,7 ,8 ,9 ]
机构
[1] Rhein Westfal TH Aachen, Dept Psychiat Psychotherapy & Psychosomat, D-52072 Aachen, Germany
[2] Julich Aachen Res Alliance, JARA BRAIN, Aachen, Germany
[3] Int Res Training Grp IRTG2150, Aachen, Germany
[4] CEA Saclay, Neurospin, INRIA, Parietal Team, Bat 145, F-91191 Gif Sur Yvette, France
[5] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 119077, Singapore
[6] Natl Univ Singapore, Clin Imaging Res Ctr, Singapore 117599, Singapore
[7] Natl Univ Singapore, Singapore Inst Neurotechnol, Singapore 117456, Singapore
[8] Natl Univ Singapore, Memory Networks Programme, Singapore 119077, Singapore
[9] Harvard Med Sch, Massachusetts Gen Hosp, Martinos Ctr Biomed Imaging, Charlestown, MA 02129 USA
关键词
Systems biology; Epistemology; Hypothesis testing; High-dimensional statistics; Machine learning; Sample complexity; VS. GENERATIVE CLASSIFIERS; DEEP NEURAL-NETWORKS; FUNCTIONAL ARCHITECTURE; BAYESIAN MODEL; OVERLAPPING COMMUNITIES; CONNECTIVITY NETWORKS; LOGISTIC-REGRESSION; BRAIN; CLASSIFICATION; PREDICTION;
D O I
10.1016/j.neuroimage.2017.04.061
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neuroscience is undergoing faster changes than ever before. Over 100 years our field qualitatively described and invasively manipulated single or few organisms to gain anatomical, physiological, and pharmacological insights. In the last 10 years neuroscience spawned quantitative datasets of unprecedented breadth (e.g., microanatomy, synaptic connections, and optogenetic brain-behavior assays) and size (e.g., cognition, brain imaging, and genetics). While growing data availability and information granularity have been amply discussed, we direct attention to a less explored question: How will the unprecedented data richness shape data analysis practices? Statistical reasoning is becoming more important to distill neurobiological knowledge from healthy and pathological brain measurements. We argue that large-scale data analysis will use more statistical models that are non-parametric, generative, and mixing frequentist and Bayesian aspects, while supplementing classical hypothesis testing with out-of-sample predictions.
引用
收藏
页码:549 / 564
页数:16
相关论文
共 225 条
[1]  
Abu-Mostafa, 2012, Learning_from_data
[2]   Internal Representations of Temporal Statistics and Feedback Calibrate Motor-Sensory Interval Timing [J].
Acerbi, Luigi ;
Wolpert, Daniel M. ;
Vijayakumar, Sethu .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (11)
[3]   Neuroscience Training for the 21st Century [J].
Akil, Huda ;
Balice-Gordon, Rita ;
Cardozo, David Lopes ;
Koroshetz, Walter ;
Norris, Sheena M. Posey ;
Sherer, Todd ;
Sherman, S. Murray ;
Thiels, Edda .
NEURON, 2016, 90 (05) :917-926
[4]   UK Biobank: Current status and what it means for epidemiology [J].
Allen, Naomi ;
Sudlow, Cathie ;
Downey, Paul ;
Peakman, Tim ;
Danesh, John ;
Elliott, Paul ;
Gallacher, John ;
Green, Jane ;
Matthews, Paul ;
Pell, Jill ;
Sprosen, Tim ;
Collins, Rory .
HEALTH POLICY AND TECHNOLOGY, 2012, 1 (03) :123-126
[5]   BigBrain: An Ultrahigh-Resolution 3D Human Brain Model [J].
Amunts, Katrin ;
Lepage, Claude ;
Borgeat, Louis ;
Mohlberg, Hartmut ;
Dickscheid, Timo ;
Rousseau, Marc-Etienne ;
Bludau, Sebastian ;
Bazin, Pierre-Louis ;
Lewis, Lindsay B. ;
Oros-Peusquens, Ana-Maria ;
Shah, Nadim J. ;
Lippert, Thomas ;
Zilles, Karl ;
Evans, Alan C. .
SCIENCE, 2013, 340 (6139) :1472-1475
[6]   Non-parametric Bayesian graph models reveal community structure in resting state fMRI [J].
Andersen, Kasper Winther ;
Madsen, Kristoffer H. ;
Siebner, Hartwig Roman ;
Schmidt, Mikkel N. ;
Morup, Morten ;
Hansen, Lars Kai .
NEUROIMAGE, 2014, 100 :301-315
[7]  
Anderson C., 2008, WIRED MAG
[8]  
[Anonymous], 2017, NAT REV NEUROSCI
[9]  
[Anonymous], 2016, AM STAT
[10]  
[Anonymous], BAYESIAN NONPARAMETR