A Simple Approach to Patterned Protein Immobilization on Silicon via Electrografting from Diazonium Salt Solutions

被引:49
作者
Flavel, Benjamin S. [1 ]
Gross, Andrew J. [1 ,3 ]
Garrett, David J. [1 ,3 ]
Nock, Volker [2 ,3 ]
Downard, Alison J. [1 ,3 ]
机构
[1] Univ Canterbury, Dept Chem, Christchurch 8140, New Zealand
[2] Univ Canterbury, Dept Elect & Comp Engn, Christchurch 8140, New Zealand
[3] MacDiarmid Inst Adv Mat & Nanotechnol, Christchurch 8140, New Zealand
关键词
p-phenylenediamine; electrochemical; biotin; avidin; pattern; ELECTRON-BEAM LITHOGRAPHY; GOLD NANOPARTICLES; CARBON SURFACES; REDUCTION; ATTACHMENT; FILMS; AFM; ELECTROCHEMISTRY; STREPTAVIDIN; MONOLAYERS;
D O I
10.1021/am100020a
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A highly versatile method utilizing diazonium salt chemistry has been developed for the fabrication of protein arrays. Conventional ultraviolet mask lithography was used to pattern micrometer sized regions into a commercial photoresist on a highly doped p-type silicon (100) substrate. These patterned regions were used as a template For the electrochemical grafting of the in situ generated p-aminobenzenediazonium cation to form patterns of aminophenyl film on silicon. Immobilization of biomolecules was demonstrated by coupling biotin to the aminophenyl regions followed by reaction with fluorescently labeled avidin and visualization with fluorescence microscopy. This simple patterning strategy is promising for future application in biosensor devices.
引用
收藏
页码:1184 / 1190
页数:7
相关论文
共 64 条
[1]   Immobilization of protein molecules on step-controlled sapphire surfaces [J].
Aoki, R. ;
Arakawa, T. ;
Misawa, N. ;
Tero, R. ;
Urisu, T. ;
Takeuchi, A. ;
Ogino, T. .
SURFACE SCIENCE, 2007, 601 (21) :4915-4921
[2]   Detection of biomolecular interaction between biotin and streptavidin on a self-assembled monolayer using magnetic nanoparticles [J].
Arakaki, A ;
Hideshima, S ;
Nakagawa, T ;
Niwa, D ;
Tanaka, T ;
Matsunaga, T ;
Osaka, T .
BIOTECHNOLOGY AND BIOENGINEERING, 2004, 88 (04) :543-546
[3]   Self assembled monolayers on silicon for molecular electronics [J].
Aswal, D. K. ;
Lenfant, S. ;
Guerin, D. ;
Yakhmi, J. V. ;
Vuillaume, D. .
ANALYTICA CHIMICA ACTA, 2006, 568 (1-2) :84-108
[4]   Adsorption of avidin on microfabricated surfaces for protein biochip applications [J].
Bashir, R ;
Gomez, R ;
Sarikaya, A ;
Ladisch, MR ;
Sturgis, J ;
Robinson, JP .
BIOTECHNOLOGY AND BIOENGINEERING, 2001, 73 (04) :324-328
[5]   Chemical functionalization of GaN and AlN surfaces [J].
Baur, B ;
Steinhoff, G ;
Hernando, J ;
Purrucker, O ;
Tanaka, M ;
Nickel, B ;
Stutzmann, M ;
Eickhoff, M .
APPLIED PHYSICS LETTERS, 2005, 87 (26) :1-3
[6]   Chemical tethering of motile bacteria to silicon surfaces [J].
Bearinger, Jane P. ;
Dugan, Lawrence C. ;
Wu, Ligang ;
Hill, Haley ;
Christian, Allen T. ;
Hubbell, Jeffrey A. .
BIOTECHNIQUES, 2009, 46 (03) :209-+
[7]   Protein patterning [J].
Blawas, AS ;
Reichert, WM .
BIOMATERIALS, 1998, 19 (7-9) :595-609
[8]   Photochemical activation of a polycarbonate surface for covalent immobilization of a protein ligand [J].
Bora, Utpal ;
Sharma, Pragya ;
Kumar, Saroj ;
Kannan, Krishnamoorthy ;
Nahar, Pradip .
TALANTA, 2006, 70 (03) :624-629
[9]   A multistep chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging [J].
Brockman, JM ;
Frutos, AG ;
Corn, RM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (35) :8044-8051
[10]   Segregation of micrometer-dimension biosensor elements on a variety of substrate surfaces [J].
Brooks, SA ;
Dontha, N ;
Davis, CB ;
Stuart, JK ;
O'Neill, G ;
Kuhr, WG .
ANALYTICAL CHEMISTRY, 2000, 72 (14) :3253-3259