MicroRNA detection and target prediction: Integration of computational and experimental approaches

被引:81
作者
Chaudhuri, Keya [1 ]
Chatterjee, Raghunath [1 ]
机构
[1] Indian Inst Chem Biol, Mol & human Genet Div, Kolkata 700032, W Bengal, India
关键词
D O I
10.1089/dna.2006.0549
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In recent years, microRNAs (miRNAs), a class of 19-25 nucleotides noncoding RNAs, have been shown to play a major role in gene regulation across a broad range of metazoans and are important for a diverse biological functions. These miRNAs are involved in the regulation of protein expression primarily by binding to one or more target sites on an mRNA transcript and causing cleavage or repression of translation. Computer-based approaches for miRNA gene identification and miRNA target prediction are being considered as indispensable in miRNA research. Similarly, effective experimental techniques validating in silico predictions are crucial to the testing and finetuning of computational algorithms. Iterative interactions between in silico and experimental methods are now playing a central role in the biology of miRNAs. In this review, we summarize the various computational methods for identification of miRNAs and their targets as well as the technologies that have been developed to validate the predictions.
引用
收藏
页码:321 / 337
页数:17
相关论文
共 133 条
[21]   MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode [J].
Chang, S ;
Johnston, RJ ;
Frokjær-Jensen, C ;
Lockery, S ;
Hobert, O .
NATURE, 2004, 430 (7001) :785-789
[22]  
Chatterjee R, 2006, ACTA BIOCHIM POL, V53, P303
[23]   The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation [J].
Chen, JF ;
Mandel, EM ;
Thomson, JM ;
Wu, QL ;
Callis, TE ;
Hammond, SM ;
Conlon, FL ;
Wang, DZ .
NATURE GENETICS, 2006, 38 (02) :228-233
[24]   Prediction and identification of herpes simplex virus 1-encoded MicroRNAs [J].
Cui, Can ;
Griffiths, Anthony ;
Li, Guanglin ;
Silva, Lindsey M. ;
Kramer, Martha F. ;
Gaasterland, Terry ;
Wang, Xiu-Jie ;
Coen, Donald M. .
JOURNAL OF VIROLOGY, 2006, 80 (11) :5499-5508
[25]   Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides [J].
Deo, Monika ;
Yu, Jenn-Yah ;
Chung, Kwan-Ho ;
Tippens, Melissa ;
Turner, David L. .
DEVELOPMENTAL DYNAMICS, 2006, 235 (09) :2538-2548
[26]   Searching for patterns in genomic data [J].
Dsouza, M ;
Larsen, N ;
Overbeek, R .
TRENDS IN GENETICS, 1997, 13 (12) :497-498
[27]   Hidden Markov models [J].
Eddy, SR .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1996, 6 (03) :361-365
[28]  
Enright AJ, 2004, GENOME BIOL, V5
[29]   MicroRNA-143 regulates adipocyte differentiation [J].
Esau, C ;
Kang, XL ;
Peralta, E ;
Hanson, E ;
Marcusson, EG ;
Ravichandran, LV ;
Sun, YQ ;
Koo, S ;
Perera, RJ ;
Jain, R ;
Dean, NM ;
Freier, SM ;
Bennett, CF ;
Lollo, B ;
Griffey, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (50) :52361-52365
[30]   Attomole microarray detection of MicroRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions [J].
Fang, Shiping ;
Lee, Hye Jin ;
Wark, Alastair W. ;
Corn, Robert M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (43) :14044-14046