Order by disorder, without order, in a two-dimensional spin system with O(2) symmetry

被引:20
作者
Biskup, M [1 ]
Chayes, L
Kivelson, SA
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
[2] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA USA
来源
ANNALES HENRI POINCARE | 2004年 / 5卷 / 06期
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00023-004-0196-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a rigorous proof of an ordering transition for a two-component two-dimensional antiferromagnet with nearest and next-nearest neighbor interactions. The low-temperature phase contains two states distinguished by local order among columns or, respectively, rows. Overall, there is no magnetic order in accord with the classic Mermin-Wagner theorem. The method of proof employs a rigorous version of "order by disorder," whereby a high degeneracy among the ground states is lifted according to the differences in their associated spin-wave spectra,
引用
收藏
页码:1181 / 1205
页数:25
相关论文
共 45 条
[1]   PHASE-DIAGRAM OF ULTRATHIN FERROMAGNETIC-FILMS WITH PERPENDICULAR ANISOTROPY [J].
ABANOV, A ;
KALATSKY, V ;
POKROVSKY, VL ;
SASLOW, WM .
PHYSICAL REVIEW B, 1995, 51 (02) :1023-1038
[2]   Non-perturbative criteria for Gibbsian uniqueness [J].
Alexander, KS ;
Chayes, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 189 (02) :447-464
[3]  
BISKUP M, UNPUB
[4]  
BISKUP M, IN PRESS COMMUN MATH
[5]   The random cluster representation for the infinite-spin Ising model: application to QCD pure gauge theory [J].
Blanchard, P ;
Chayes, L ;
Gandolfo, D .
NUCLEAR PHYSICS B, 2000, 588 (1-2) :229-252
[6]   PHASE-TRANSITIONS IN SYSTEMS WITH A FINITE NUMBER OF DOMINANT GROUND-STATES [J].
BRICMONT, J ;
SLAWNY, J .
JOURNAL OF STATISTICAL PHYSICS, 1989, 54 (1-2) :89-161
[7]   Staggered phases in diluted systems with continuous spins [J].
Chayes, L ;
Kotecky, R ;
Shlosman, SB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 189 (02) :631-640
[8]   Discontinuity of the magnetization in diluted O(n)-models [J].
Chayes, L ;
Shlosman, SB ;
Zagrebnov, VA .
JOURNAL OF STATISTICAL PHYSICS, 2000, 98 (3-4) :537-549
[9]   Sine-Gordon revisited [J].
Dimock, J ;
Hurd, TR .
ANNALES HENRI POINCARE, 2000, 1 (03) :499-541
[10]   AN ANALYSIS OF ANNNI MODEL BY PEIERL CONTOUR METHOD [J].
DINABURG, EI ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 98 (01) :119-144