The effect of changing the deposition rate on the development of stress in evaporated copper and silver thin films deposited on oxidized silicon was examined. In situ stress measurements were made during deposition in ultrahigh vacuum using a scanning laser curvature system. In some experiments, the deposition rate was alternated without interruption of deposition. For copper thin films, a change in deposition rate has no effect on the development of the tensile stress, while the magnitude of the postcoalescence compressive stress decreases with increasing deposition rate. In silver films, the film thickness at the tensile maximum increases slightly with increasing deposition rate, while the magnitude of the postcoalescence compressive stress again decreases with increasing deposition rate. Analysis of the heat flow during deposition shows that the radiative heating and condensation contribute roughly equally to the temperature rise of the sample. (c) 2007 American Institute of Physics.