Structure adjustment during high-deposition-rate growth of microcrystalline silicon solar cells

被引:37
作者
Mai, Y
Klein, S
Geng, X
Finger, F
机构
[1] Forschungszentrum Julich, IPV, D-52425 Julich, Germany
[2] Nankai Univ, Inst Photoelect, Tianjin 300071, Peoples R China
关键词
D O I
10.1063/1.1801676
中图分类号
O59 [应用物理学];
学科分类号
摘要
Preparation of microcrystalline silicon for solar cell applications is investigated under high-pressure, high-power conditions with plasma-enhanced chemical vapor deposition at 95 MHz. It is found that the deposition rate depends mainly on the amount of silane in the reaction zone. Changes in the discharge power affect the deposition rate very little. This points to silane depletion under these process conditions. The amount of H radicals, on the other hand, increases with increasing discharge power and leads to structure changes of the material. Making use of this effect, optimum phase mixture material at the transition from highly crystalline to amorphous growth can be deposited at considerably higher deposition rates without loss in solar cell performance. (C) 2004 American Institute of Physics.
引用
收藏
页码:2839 / 2841
页数:3
相关论文
共 19 条
[1]   Stability of microcrystalline silicon for thin film solar cell applications [J].
Finger, F ;
Carius, R ;
Dylla, T ;
Klein, S ;
Okur, S ;
Günes, M .
IEE PROCEEDINGS-CIRCUITS DEVICES AND SYSTEMS, 2003, 150 (04) :300-308
[2]   IMPROVEMENT OF GRAIN-SIZE AND DEPOSITION RATE OF MICROCRYSTALLINE SILICON BY USE OF VERY HIGH-FREQUENCY GLOW-DISCHARGE [J].
FINGER, F ;
HAPKE, P ;
LUYSBERG, M ;
CARIUS, R ;
WAGNER, H ;
SCHEIB, M .
APPLIED PHYSICS LETTERS, 1994, 65 (20) :2588-2590
[3]   High rate growth of microcrystalline silicon using a high-pressure depletion method with VHF plasma [J].
Fukawa, M ;
Suzuki, S ;
Guo, LH ;
Kondo, M ;
Matsuda, A .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2001, 66 (1-4) :217-223
[4]   High rate growth of microcrystalline silicon by VHF-GD at high pressure [J].
Graf, U ;
Meier, J ;
Kroll, U ;
Bailat, J ;
Droz, C ;
Vallat-Sauvain, E ;
Shah, A .
THIN SOLID FILMS, 2003, 427 (1-2) :37-40
[5]   High rate deposition of microcrystalline silicon using conventional plasma-enhanced chemical vapor deposition [J].
Guo, LH ;
Kondo, M ;
Fukawa, M ;
Saitoh, K ;
Matsuda, A .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1998, 37 (10A) :L1116-L1118
[6]   Versatile high rate plasma deposition and processing with very high frequency excitation [J].
Heintze, M .
AMORPHOUS AND MICROCRYSTALLINE SILICON TECHNOLOGY - 1997, 1997, 467 :471-482
[7]   Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth [J].
Houben, L ;
Luysberg, M ;
Hapke, P ;
Carius, R ;
Finger, F ;
Wagner, H .
PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1998, 77 (06) :1447-1460
[8]   Intrinsic microcrystalline silicon prepared by hot-wire chemical vapour deposition for thin film solar cells [J].
Klein, S ;
Finger, F ;
Carius, R ;
Dylla, T ;
Rech, B ;
Grimm, M ;
Houben, L ;
Stutzmann, M .
THIN SOLID FILMS, 2003, 430 (1-2) :202-207
[9]   Microcrystalline silicon prepared by hot-wire chemical vapour deposition for thin film solar cell applications [J].
Klein, S ;
Wolff, J ;
Finger, F ;
Carius, R ;
Wagner, H ;
Stutzmann, M .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2002, 41 (1AB) :L10-L12
[10]   High rate growth of microcrystalline silicon at low temperatures [J].
Kondo, M ;
Fukawa, M ;
Guo, LH ;
Matsuda, A .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2000, 266 :84-89