High Capacity and Excellent Stability of Lithium Ion Battery Anode Using Interface-Controlled Binder-Free Multiwall Carbon Nanotubes Grown on Copper

被引:176
作者
Lahiri, Indranil [1 ]
Oh, Sung-Woo [2 ]
Hwang, Jun Y. [3 ]
Cho, Sungjin [4 ]
Sun, Yang-Kook [2 ]
Banerjee, Rajarshi [3 ]
Choi, Wonbong [1 ,2 ]
机构
[1] Florida Int Univ, Dept Mech & Mat Engn, Nano Mat & Device Lab, Miami, FL 33199 USA
[2] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea
[3] Univ N Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA
[4] Marquette Univ, Mat Res Lab, Milwaukee, WI 53233 USA
关键词
carbon nanotube; intercalation; lithium ion batteries; specific capacity; stability; ELECTROCHEMICAL INTERCALATION; FIELD-EMISSION; GRAPHITE ANODE; DE-LITHIATION; COMPOSITE; ELECTRODE; STORAGE; PERFORMANCE; INSERTION; ENERGY;
D O I
10.1021/nn100400r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a novel binder-free multiwall carbon nanotube (MWCNT) structure as an anode in Li ion batteries. The interface-controlled MWCNT structure, synthesized through a two-step process of catalyst deposition and chemical vapor deposition (CVD) and directly grown on a copper current collector, showed very high specific capacity, almost three times as that of graphite, excellent rate capability even at a charging/discharging rate of 3 C, and no capacity degradation up to 50 cycles. Significantly enhanced properties of this anode could be related to high Li ion intercalation on the carbon nanotube walls, strong bonding with the substrate, and excellent conductivity.
引用
收藏
页码:3440 / 3446
页数:7
相关论文
共 42 条
[1]   ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX [J].
BOUKAMP, BA ;
LESH, GC ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) :725-729
[2]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[3]   One-Pot Synthesis of Carbon Nanotube@SnO2-Au Coaxial Nanocable for Lithium-Ion Batteries with High Rate Capability [J].
Chen, Ge ;
Wang, Zhenyao ;
Xia, Dingguo .
CHEMISTRY OF MATERIALS, 2008, 20 (22) :6951-6956
[4]   Electrochemical lithiation and de-lithiation of carbon nanotube-Sn2Sb nanocomposites [J].
Chen, WX ;
Lee, JY ;
Liu, ZL .
ELECTROCHEMISTRY COMMUNICATIONS, 2002, 4 (03) :260-265
[5]  
CHOI WB, 2009, Patent No. 61222481
[6]   Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries [J].
Cui, Li-Feng ;
Yang, Yuan ;
Hsu, Ching-Mei ;
Cui, Yi .
NANO LETTERS, 2009, 9 (09) :3370-3374
[7]   Electrical transport properties and field effect transistors of carbon nanotubes [J].
Dai, Hongjie ;
Javey, Ali ;
Pop, Eric ;
Mann, David ;
Kim, Woong ;
Lu, Yuerui .
NANO, 2006, 1 (01) :1-13
[8]   Electrochemical insertion of lithium into multiwalled carbon nanotube/silicon composites produced by ballmilling [J].
Eom, J. Y. ;
Park, J. W. ;
Kwon, H. S. ;
Rajendran, S. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (09) :A1678-A1684
[9]   Improved lithium insertion/extraction properties of single-walled carbon nanotubes by high-energy ball milling [J].
Eom, JiYong ;
Kwon, HyukSang .
JOURNAL OF MATERIALS RESEARCH, 2008, 23 (09) :2458-2466
[10]   Ordered, nanostructured tin-based oxides/carbon composite as the negative-electrode material for lithium-ion batteries [J].
Fan, J ;
Wang, T ;
Yu, CZ ;
Tu, B ;
Jiang, ZY ;
Zhao, DY .
ADVANCED MATERIALS, 2004, 16 (16) :1432-+