Melnikov method for parabolic orbits

被引:3
作者
Casasayas, J
Faisca, P
Nunes, A
机构
[1] Univ Barcelona, Dept Mat Aplicada & Analisi, E-08007 Barcelona, Spain
[2] Univ Lisbon, CFMC, P-1649003 Lisbon, Portugal
[3] Univ Lisbon, CMAF, P-1649003 Lisbon, Portugal
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2003年 / 10卷 / 01期
关键词
Melnikov's method; homoclinic orbits; parabolic orbits;
D O I
10.1007/s00030-003-1031-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present work completes the study of the conditions under which Melnikov method can be used when the unperturbed system has a parabolic periodic orbit with a homoclinic loop, by considering the case of orbits whose associated Poicare map has linear part equal to the identity. The result is that the conditions for the persistence under perturbation of the invariant manifolds also ensure the convergence of the Melnikov integral and hence the applicability of the method.
引用
收藏
页码:119 / 131
页数:13
相关论文
共 18 条
[1]  
Arrowsmith D.K., 1990, INTRO DYNAMICAL SYST
[2]   INVARIANT-MANIFOLDS FOR A CLASS OF PARABOLIC POINTS [J].
CASASAYAS, J ;
FONTICH, E ;
NUNES, A .
NONLINEARITY, 1992, 5 (05) :1193-1210
[3]   Homoclinic orbits to parabolic points [J].
Casasayas, Josefina ;
Fontich, Ernest ;
Nunes, Ana .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1997, 4 (02) :201-216
[4]   Nonhyperbolic homoclinic chaos [J].
Cicogna, G ;
Santoprete, M .
PHYSICS LETTERS A, 1999, 256 (01) :25-30
[5]   An approach to Mel'nikov theory in celestial mechanics [J].
Cicogna, G ;
Santoprete, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (02) :805-815
[6]   THE EXISTENCE OF TRANSVERSE HOMOCLINIC POINTS IN THE SITNIKOV PROBLEM [J].
DANKOWICZ, H ;
HOLMES, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 116 (02) :468-483
[7]   Chaos in the Gylden problem [J].
Diacu, F ;
Selaru, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (12) :6537-6546
[10]   STABLE MANIFOLD THEOREM FOR DEGENERATE FIXED-POINTS WITH APPLICATIONS TO CELESTIAL MECHANICS [J].
MCGEHEE, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1973, 14 (01) :70-88