MicroRNA expression dynamics during murine and human erythroid differentiation

被引:130
作者
Zhan, Mei
Miller, Chris P.
Papayannopoulou, Thalia
Stamatoyannopoulos, George
Song, Chao-Zhong
机构
[1] Univ Washington, Dept Med, Div Med Genet, Seattle, WA 98195 USA
[2] Univ Washington, Dept Med, Div Hematol, Seattle, WA 98195 USA
关键词
D O I
10.1016/j.exphem.2007.03.014
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective. MicroRNAs (miRNAs) are an abundant class of small noncoding RNAs that regulate diverse cellular functions by sequence-specific inhibition of gene expression. We determined miRNA expression profile during erythroid differentiation and putative roles in erythroid differentiation. Methods. The expression profile of 295 miRNAs before and after their erythroid differentiation induction was analyzed using microarray. Fluorescein-activated cell sorting analysis was used to isolate mouse spleen erythroblasts at different differentiation stages. Human cord blood CD34(+) progenitors were differentiated in vitro. Real-time reverse transcriptase polymerase chain reaction was used to confirm the results of miRNA microarray. Synthetic oligonucleotides for miR-451 overexpression or knockdown were transfected into MEL cells. Results. More than 100 miRNAs were found to be expressed in erythroid cells. The majority of them showed changes in their expression levels with progression of erythroid differentiation. Further analysis revealed that overall miRNA expression levels are increased upon erythroid differentiation. Of the miRNAs analyzed, miR-451 was most significantly upregulated during erythroid maturation. Functional studies using gain of function and loss of function approaches showed that miR-451 is associated with erythroid maturation. Conclusions. Dynamic changes in miRNA expression occurred during erythroid differentiation, with an overall increase in the levels of miRNAs upon terminal differentiation of erythroid cells. MiR-451 may play a role in promoting erythroid differentiation. (c) 2007 International Society for Experimental Hematology. Published by Elsevier Inc.
引用
收藏
页码:1015 / 1025
页数:11
相关论文
共 31 条
[1]   Clustering and conservation patterns of human microRNAs [J].
Altuvia, Y ;
Landgraf, P ;
Lithwick, G ;
Elefant, N ;
Pfeffer, S ;
Aravin, A ;
Brownstein, MJ ;
Tuschl, T ;
Margalit, H .
NUCLEIC ACIDS RESEARCH, 2005, 33 (08) :2697-2706
[2]   MicroRNA functions in animal development and human disease [J].
Alvarez-Garcia, I ;
Miska, EA .
DEVELOPMENT, 2005, 132 (21) :4653-4662
[3]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[4]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[5]   Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA [J].
Braasch, DA ;
Corey, DR .
CHEMISTRY & BIOLOGY, 2001, 8 (01) :1-7
[6]   A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA) [J].
Castoldi, M ;
Schmidt, S ;
Benes, V ;
Noerholm, M ;
Kulozik, AE ;
Hentze, MW ;
Muckenthaler, MU .
RNA, 2006, 12 (05) :913-920
[7]   Real-time quantification of microRNAs by stem-loop RT-PCR [J].
Chen, CF ;
Ridzon, DA ;
Broomer, AJ ;
Zhou, ZH ;
Lee, DH ;
Nguyen, JT ;
Barbisin, M ;
Xu, NL ;
Mahuvakar, VR ;
Andersen, MR ;
Lao, KQ ;
Livak, KJ ;
Guegler, KJ .
NUCLEIC ACIDS RESEARCH, 2005, 33 (20) :e179.1-e179.9
[8]   MicroRNAs as regulators of mammalian hematopoiesis [J].
Chen, CZ ;
Lodish, HF .
SEMINARS IN IMMUNOLOGY, 2005, 17 (02) :155-165
[9]   MicroRNAs modulate hematopoietic lineage differentiation [J].
Chen, CZ ;
Li, L ;
Lodish, HF ;
Bartel, DP .
SCIENCE, 2004, 303 (5654) :83-86
[10]   T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer [J].
Cobb, BS ;
Nesterova, TB ;
Thompson, E ;
Hertweck, A ;
O'Connor, E ;
Godwin, J ;
Wilson, CB ;
Brockdorff, N ;
Fisher, AG ;
Smale, ST ;
Merkenschlager, M .
JOURNAL OF EXPERIMENTAL MEDICINE, 2005, 201 (09) :1367-1373