Quantifying ion-induced defects and Raman relaxation length in graphene

被引:1475
作者
Lucchese, M. M. [2 ]
Stavale, F. [2 ]
Ferreira, E. H. Martins [2 ]
Vilani, C. [2 ]
Moutinho, M. V. O. [3 ]
Capaz, Rodrigo B. [2 ,3 ]
Achete, C. A. [2 ,4 ]
Jorio, A. [1 ,2 ]
机构
[1] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil
[2] Inst Nacl Metrol Normalizacao & Qualidade Ind INM, BR-25250020 Duque De Caxias, RJ, Brazil
[3] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil
[4] Univ Fed Rio de Janeiro, PEMM, BR-21945970 Rio De Janeiro, Brazil
关键词
CARBON; SCATTERING; GRAPHITE; EDGES;
D O I
10.1016/j.carbon.2009.12.057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Raman scattering is used to study disorder in graphene subjected to low energy (90 eV) Ar' ion bombardment The evolution of the intensity ratio between the G band (1585 cm(-1)) and the disorder-induced D band (1345 cm(-1)) with ion dose is determined, providing a spectroscopy-based method to quantify the density of defects in graphene This evolution can be fitted by a phenomenological model, which is in conceptual agreement with a well-established amorphization. trajectory for graphitic materials Our results show that the broadly used Tuinstra-Koenig relation should be limited to the measure of crystallite sizes, and allows extraction of the Raman relaxation length for the disorder-induced Raman scattering process (C) 2010 Elsevier Ltd All rights reserved
引用
收藏
页码:1592 / 1597
页数:6
相关论文
共 19 条
[1]   Boundary problems for Dirac electrons and edge-assisted Raman scattering in graphene [J].
Basko, D. M. .
PHYSICAL REVIEW B, 2009, 79 (20)
[2]   General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy [J].
Cançado, LG ;
Takai, K ;
Enoki, T ;
Endo, M ;
Kim, YA ;
Mizusaki, H ;
Jorio, A ;
Coelho, LN ;
Magalhaes-Paniago, R ;
Pimenta, MA .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[3]  
CANCADO LG, ARXIV08023709
[4]   Raman Spectroscopy of Graphene Edges [J].
Casiraghi, C. ;
Hartschuh, A. ;
Qian, H. ;
Piscanec, S. ;
Georgi, C. ;
Fasoli, A. ;
Novoselov, K. S. ;
Basko, D. M. ;
Ferrari, A. C. .
NANO LETTERS, 2009, 9 (04) :1433-1441
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   Defect Scattering in Graphene [J].
Chen, Jian-Hao ;
Cullen, W. G. ;
Jang, C. ;
Fuhrer, M. S. ;
Williams, E. D. .
PHYSICAL REVIEW LETTERS, 2009, 102 (23)
[7]   Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials [J].
Cuesta, A ;
Dhamelincourt, P ;
Laureyns, J ;
Martínez-Alonso, A ;
Tascón, JMD .
JOURNAL OF MATERIALS CHEMISTRY, 1998, 8 (12) :2875-2879
[8]   USE OF RAMAN-SCATTERING TO INVESTIGATE DISORDER AND CRYSTALLITE FORMATION IN AS-DEPOSITED AND ANNEALED CARBON-FILMS [J].
DILLON, RO ;
WOOLLAM, JA ;
KATKANANT, V .
PHYSICAL REVIEW B, 1984, 29 (06) :3482-3489
[9]  
Dresselhaus M.S., 1992, ION IMPLANTATION DIA, V1
[10]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)