Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation: Exact time-dependent solutions

被引:118
作者
Bologna, M
Tsallis, C
Grigolini, P
机构
[1] Univ N Texas, Dept Phys, Denton, TX 76203 USA
[2] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[3] CNR, Ist Biofis, Area Ric Pisa, I-56010 Pisa, Italy
[4] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[5] INFM, Dipartimento Fis, I-56127 Pisa, Italy
关键词
D O I
10.1103/PhysRevE.62.2213
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the d=1 nonlinear Fokker-Planck-like equation with fractional derivatives (partial derivative/partial derivative t)P(x,t) =D(partial derivative(gamma)/partial derivative x(gamma))[P(x,t)](nu). Exact time-dependent solutions are found for nu=(2- gamma)/(1 + gamma)(-infinity< y less than or equal to 2). By considering the long-distance asymptotic behavior of these solutions, a connection is established, namely, q =(gamma+ 3)/(y + 1)(0<gamma less than or equal to 2), with the solutions optimizing the nonextensive entropy characterized by index q. Interestingly enough, this relation coincides with the one already known for Levy-like superdiffusion (i.e., nu = 1 and 0<gamma less than or equal to 2). Finally, for (gamma,nu)=(2,0) we obtain q=5/3, which differs from the value q=2 corresponding to the gamma=2 solutions available in the literature (nu<1 porous medium equation), thus exhibiting nonuniform convergence.
引用
收藏
页码:2213 / 2218
页数:6
相关论文
共 35 条
[11]   Fractional calculus as a macroscopic manifestation of randomness [J].
Grigolini, P ;
Rocco, A ;
West, BJ .
PHYSICAL REVIEW E, 1999, 59 (03) :2603-2613
[12]   FRACTIONAL MASTER-EQUATIONS AND FRACTAL TIME RANDOM-WALKS [J].
HILFER, R ;
ANTON, L .
PHYSICAL REVIEW E, 1995, 51 (02) :R848-R851
[13]   EXACT-SOLUTIONS FOR A CLASS OF FRACTAL TIME RANDOM-WALKS [J].
HILFER, R .
FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1995, 3 (01) :211-216
[14]  
Hilfer R, 1999, LECT NOTES PHYS, V519, P77
[15]   Fractional Levy motions and related processes [J].
Huillet, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (42) :7225-7248
[16]  
IGNACCOLO M, CONDMAT0004155
[17]   Fractional diffusion, waiting-time distributions, and Cattaneo-type equations [J].
Metzler, R ;
Nonnenmacher, TF .
PHYSICAL REVIEW E, 1998, 57 (06) :6409-6414
[18]   Non-extensive statistical mechanics and generalized Fokker-Planck equation [J].
Plastino, AR ;
Plastino, A .
PHYSICA A, 1995, 222 (1-4) :347-354
[19]   Nonextensive foundation of Levy distributions [J].
Prato, D ;
Tsallis, C .
PHYSICAL REVIEW E, 1999, 60 (02) :2398-2401
[20]  
RAJAGOPAL AK, 2000, CONDMAT0003304