Frustrated Antiferromagnets with Entanglement Renormalization: Ground State of the Spin-1/2 Heisenberg Model on a Kagome Lattice

被引:174
作者
Evenbly, G. [1 ]
Vidal, G. [1 ]
机构
[1] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
Antiferromagnets - Best approximations - Heisenberg models - Infinite lattices - Kagome lattice - Periodic boundary conditions - Renormalization - Valence bond crystals;
D O I
10.1103/PhysRevLett.104.187203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement renormalization techniques are applied to numerically investigate the ground state of the spin- 1/2 Heisenberg model on a kagome lattice. Lattices of N = {36, 144, infinity} sites with periodic boundary conditions are considered. For the infinite lattice, the best approximation to the ground state is found to be a valence bond crystal with a 36-site unit cell, compatible with a previous proposal. Its energy per site, E = -0.432 21, is an exact upper bound and is lower than the energy of any previous (gapped or algebraic) spin liquid candidate for the ground state.
引用
收藏
页数:4
相关论文
共 26 条
[1]   Low-energy singlets in the Heisenberg antiferromagnet on the kagome lattice [J].
Budnik, R ;
Auerbach, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (18) :187205-1
[2]   Multiscale entanglement renormalization ansatz in two dimensions: Quantum Ising model [J].
Cincio, Lukasz ;
Dziarmaga, Jacek ;
Rams, Marek M. .
PHYSICAL REVIEW LETTERS, 2008, 100 (24)
[3]   Entanglement renormalization in free bosonic systems: real-space versus momentum-space renormalization group transforms [J].
Evenbly, G. ;
Vidal, G. .
NEW JOURNAL OF PHYSICS, 2010, 12
[4]   Entanglement Renormalization in Two Spatial Dimensions [J].
Evenbly, G. ;
Vidal, G. .
PHYSICAL REVIEW LETTERS, 2009, 102 (18)
[5]   Algorithms for entanglement renormalization [J].
Evenbly, G. ;
Vidal, G. .
PHYSICAL REVIEW B, 2009, 79 (14)
[6]  
EVENBLY G, PHYS REV B IN PRESS, P3201
[7]   Dirac structure, RVB, and Goldstone modes in the kagome antiferromagnet [J].
Hastings, MB .
PHYSICAL REVIEW B, 2001, 63 (01)
[8]   Algebraic spin liquid as the mother of many competing orders [J].
Hermele, M ;
Senthil, T ;
Fisher, MPA .
PHYSICAL REVIEW B, 2005, 72 (10)
[9]   Properties of an algebraic spin liquid on the kagome lattice [J].
Hermele, Michael ;
Ran, Ying ;
Lee, Patrick A. ;
Wen, Xiao-Gang .
PHYSICAL REVIEW B, 2008, 77 (22)
[10]   Density matrix renormalization group numerical study of the kagome antiferromagnet [J].
Jiang, H. C. ;
Weng, Z. Y. ;
Sheng, D. N. .
PHYSICAL REVIEW LETTERS, 2008, 101 (11)