beta-(25-35) is a synthetic derivative of beta-amyloid, the peptide that is believed to cause Alzheimer's disease. As it is highly toxic and forms fibrillar aggregates typical of P-amyloid, it is suitable as a model for testing inhibitors of aggregation and toxicity. We demonstrate that N-methylated derivatives of beta-(25-35), which in isolation are soluble and non-toxic, can prevent the aggregation and inhibit the resulting toxicity of the wild type peptide. N-Methylation can block hydrogen bonding on the outer edge of the assembling amyloid, The peptides are assayed by Congo red and thioflavin T binding, electron microscopy, and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) toxicity assay on PC12 cells. One peptide (Gly(25) N-methylated) has properties similar to the wild type, whereas five have varying effects on prefolded fibrils and fibril assembly. In particular, beta-(25-35) with Gly(33) N-methylated is able to completely prevent fibril assembly and to reduce the toxicity of prefolded amyloid. With Leu(34) N-methylated, the fibril morphology is altered and the toxicity reduced. We suggest that the use of N-methylated derivatives of amyloidogenic peptides and proteins could provide a general solution to the problem of amyloid deposition and toxicity.