Ga+ beam lithography for nanoscale silicon reactive ion etching

被引:52
作者
Henry, M. D. [1 ]
Shearn, M. J.
Chhim, B.
Scherer, A.
机构
[1] CALTECH, Dept Appl Phys, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
NANOFABRICATION;
D O I
10.1088/0957-4484/21/24/245303
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
By using a dry etch chemistry which relies on the highly preferential etching of silicon, over that of gallium (Ga), we show resist-free fabrication of precision, high aspect ratio nanostructures and microstructures in silicon using a focused ion beam (FIB) and an inductively coupled plasma reactive ion etcher (ICP-RIE). Silicon etch masks are patterned via Ga+ ion implantation in a FIB and then anisotropically etched in an ICP-RIE using fluorinated etch chemistries. We determine the critical areal density of the implanted Ga layer in silicon required to achieve a desired etch depth for both a Pseudo Bosch (SF6/C4F8) and cryogenic fluorine (SF6/O-2) silicon etching. High fidelity nanoscale structures down to 30 nm and high aspect ratio structures of 17:1 are demonstrated. Since etch masks may be patterned on uneven surfaces, we utilize this lithography to create multilayer structures in silicon. The linear selectivity versus implanted Ga density enables grayscale lithography. Limits on the ultimate resolution and selectivity of Ga lithography are also discussed.
引用
收藏
页数:8
相关论文
共 22 条
[1]  
AMPERE AT, 2005, SMALL, V1, P594
[2]   LATTICE CONSTANTS OF GALLIUM AT 297 DEGREES K [J].
BARRETT, CS ;
SPOONER, FJ .
NATURE, 1965, 207 (5004) :1382-&
[3]   The fabrication of silicon nanostructures by local gallium implantation and cryogenic deep reactive ion etching [J].
Chekurov, N. ;
Grigoras, K. ;
Peltonen, A. ;
Franssila, S. ;
Tittonen, I. .
NANOTECHNOLOGY, 2009, 20 (06)
[4]   Guidelines for etching silicon MEMS structures using fluorine high-density plasmas at cryogenic temperatures [J].
de Boer, MJ ;
Gardeniers, JGE ;
Jansen, HV ;
Smulders, E ;
Gilde, MJ ;
Roelofs, G ;
Sasserath, JN ;
Elwenspoek, M .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2002, 11 (04) :385-401
[5]   Nanoscale effects in focused ion beam processing [J].
Frey, L ;
Lehrer, C ;
Ryssel, H .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2003, 76 (07) :1017-1023
[6]   New approaches to nanofabrication: Molding, printing, and other techniques [J].
Gates, BD ;
Xu, QB ;
Stewart, M ;
Ryan, D ;
Willson, CG ;
Whitesides, GM .
CHEMICAL REVIEWS, 2005, 105 (04) :1171-1196
[7]   Exploration of the ultimate patterning potential achievable with high resolution focused ion beams [J].
Gierak, J ;
Mailly, D ;
Hawkes, P ;
Jede, R ;
Bruchhaus, L ;
Bardotti, L ;
Prével, B ;
Mélinon, P ;
Perez, A ;
Hyndman, R ;
Jamet, JP ;
Ferré, J ;
Mougin, A ;
Chappert, C ;
Mathet, V ;
Warin, P ;
Chapman, J .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 80 (01) :187-194
[8]   Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and nanopillars [J].
Henry, M. D. ;
Walavalker, S. ;
Homyk, A. ;
Scherer, A. .
NANOTECHNOLOGY, 2009, 20 (25)
[9]   Black silicon method X: a review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment [J].
Jansen, H. V. ;
de Boer, M. J. ;
Unnikrishnan, S. ;
Louwerse, M. C. ;
Elwenspoek, M. C. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2009, 19 (03)
[10]   Side-wall damage in a transmission electron microscopy specimen of crystalline Si prepared by focused ion beam etching [J].
Kato, NI ;
Kohno, Y ;
Saka, H .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1999, 17 (04) :1201-1204