On the global existence of solutions to a class of fractional differential equations

被引:145
作者
Baleanu, Dumitru [1 ,2 ]
Mustafa, Octavian G. [1 ]
机构
[1] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[2] Inst Space Sci, Natl Inst Laser Plasma & Radiat, R-76911 Bucharest, Romania
关键词
Fractional differential equation; Global existence of solution; Fixed point theory; EULER-LAGRANGE; FORMULATION; CALCULUS; DIFFUSION; OPERATORS; MODELS;
D O I
10.1016/j.camwa.2009.08.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present two global existence results for an initial value problem associated to a large class of fractional differential equations. Our approach differs substantially from the techniques employed in the recent literature. By introducing an easily verifiable hypothesis, we allow for immediate applications of a general comparison type result from [V. Lakshmikantham, AS. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. TMA 69 (2008), 2677-2682]. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1835 / 1841
页数:7
相关论文
共 38 条
[1]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[2]  
Ahlfors L. V., 1979, COMPLEX ANAL INTRO T, V3rd
[3]   Variational problems with fractional derivatives: Euler-Lagrange equations [J].
Atanackovic, T. M. ;
Konjik, S. ;
Pilipovic, S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (09)
[4]   Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Muslih, SI .
PHYSICA SCRIPTA, 2005, 72 (2-3) :119-121
[5]   On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative [J].
Baleanu, Dumitru ;
Muslih, Sami I. ;
Rabei, Eqab M. .
NONLINEAR DYNAMICS, 2008, 53 (1-2) :67-74
[6]   New applications of fractional variational principles [J].
Baleanu, Dumitru .
REPORTS ON MATHEMATICAL PHYSICS, 2008, 61 (02) :199-206
[7]   On exact solutions of a class of fractional Euler-Lagrange equations [J].
Baleanu, Dumitru ;
Trujillo, Juan J. .
NONLINEAR DYNAMICS, 2008, 52 (04) :331-335
[8]   Fractional Hamiltonian analysis of higher order derivatives systems [J].
Baleanu, Dumitru ;
Muslih, Sami I. ;
Tas, Kenan .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (10)
[9]   Fractional Hamilton formalism within Caputo's derivative [J].
Baleanu, Dumitru ;
Agrawal, Om. P. .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (10-11) :1087-1092
[10]  
BREZIS H, 1999, THEORIE APPL