Fabrication of graphene nanoribbons via nanowire lithography

被引:26
作者
Fasoli, A. [1 ]
Colli, A. [2 ]
Lombardo, A. [1 ]
Ferrari, A. C. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England
[2] Univ Cambridge, Nanosci Ctr, Nokia Res Ctr Cambridge UK, Cambridge CB3 0FF, England
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2009年 / 246卷 / 11-12期
基金
欧洲研究理事会;
关键词
CARBON NANOTUBES; NANOGRAPHITE RIBBONS; SILICON NANOWIRES; GRAPHITE; ELECTRON; EDGE; DEPENDENCE; PHASE; STATE; FILMS;
D O I
10.1002/pssb.200982356
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Graphene nanoribbons (GNRs) are the counterpart of nanotubes in graphene nanoelectronics. The search for a cheap, parallel, and deterministic technique for practical implementation of these structures is still open. Nanowire lithography (NWL) consists in using nanowires (NWs) as etch masks to transfer their one-dimensional morphology to an underlying substrate. Here, we show that oxidized silicon NWs (SiNWs) are a simple and compatible system to implement NWL on graphene. The SiNWs morphology is transferred onto a graphene flake by a low-power O-2 plasma in a deep-reactive-ion-etcher. The process leads to conformal GNRs with diameter comparable to the overlaying NW lateral dimensions. The diameter can be further reduced by Multiple O-2 etching steps. Field-effect measurements show the transition to a semiconductor for low diameters. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:2514 / 2517
页数:4
相关论文
共 50 条
[1]  
[Anonymous], IEEE ELECT DEVICE LE
[2]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[3]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[4]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[5]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[6]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[7]   Rayleigh imaging of graphene and graphene layers [J].
Casiraghi, C. ;
Hartschuh, A. ;
Lidorikis, E. ;
Qian, H. ;
Harutyunyan, H. ;
Gokus, T. ;
Novoselov, K. S. ;
Ferrari, A. C. .
NANO LETTERS, 2007, 7 (09) :2711-2717
[8]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[9]   Edge-functionalized and substitutionally doped graphene nanoribbons:: Electronic and spin properties [J].
Cervantes-Sodi, F. ;
Csanyi, G. ;
Piscanec, S. ;
Ferrari, A. C. .
PHYSICAL REVIEW B, 2008, 77 (16)
[10]  
Charlier JC, 2008, TOP APPL PHYS, V111, P673, DOI 10.1007/978-3-540-72865-8_21