Graphene photodetectors for high-speed optical communications

被引:2156
作者
Mueller, Thomas [1 ]
Xia, Fengnian [1 ]
Avouris, Phaedon [1 ]
机构
[1] IBM Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
基金
奥地利科学基金会;
关键词
SILICON; TRANSISTORS; PHOTODIODE; LAYER;
D O I
10.1038/NPHOTON.2010.40
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Although silicon has dominated solid-state electronics for more than four decades, a variety of other materials are used in photonic devices to expand the wavelength range of operation and improve performance. For example, gallium-nitride based materials enable light emission at blue and ultraviolet wave-lengths(1), and high index contrast silicon-on-insulator facilitates ultradense photonic devices(2,3). Here, we report the first use of a photodetector based on graphene(4,5), a two-dimensional carbon material, in a 10 Gbit s(-1) optical data link. In this interdigitated metal-graphene-metal photodetector, an asymmetric metallization scheme is adopted to break the mirror symmetry of the internal electric-field profile in conventional graphene field-effect transistor channels(6-9), allowing for efficient photo-detection. A maximum external photoresponsivity of 6.1 mA W-1 is achieved at a wavelength of 1.55 mu m. Owing to the unique band structure of graphene(10,11) and extensive developments in graphene electronics(12,13) and wafer-scale synthesis(13), graphene-based integrated electronic-photonic circuits with an operational wavelength range spanning 300 nm to 6 mm (and possibly beyond) can be expected in the future.
引用
收藏
页码:297 / 301
页数:5
相关论文
共 30 条
[1]   Making graphene visible [J].
Blake, P. ;
Hill, E. W. ;
Castro Neto, A. H. ;
Novoselov, K. S. ;
Jiang, D. ;
Yang, R. ;
Booth, T. J. ;
Geim, A. K. .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[2]  
Fasol S.N., 1997, BLUE LASER DIODE GAN
[3]   Counting graphene layers on glass via optical reflection microscopy [J].
Gaskell, P. E. ;
Skulason, H. S. ;
Rodenchuk, C. ;
Szkopek, T. .
APPLIED PHYSICS LETTERS, 2009, 94 (14)
[4]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[5]   Doping graphene with metal contacts [J].
Giovannetti, G. ;
Khomyakov, P. A. ;
Brocks, G. ;
Karpan, V. M. ;
van den Brink, J. ;
Kelly, P. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (02)
[6]   Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping [J].
Kim, S ;
Lim, YT ;
Soltesz, EG ;
De Grand, AM ;
Lee, J ;
Nakayama, A ;
Parker, JA ;
Mihaljevic, T ;
Laurence, RG ;
Dor, DM ;
Cohn, LH ;
Bawendi, MG ;
Frangioni, JV .
NATURE BIOTECHNOLOGY, 2004, 22 (01) :93-97
[7]   Contact and edge effects in graphene devices [J].
Lee, Eduardo J. H. ;
Balasubramanian, Kannan ;
Weitz, Ralf Thomas ;
Burghard, Marko ;
Kern, Klaus .
NATURE NANOTECHNOLOGY, 2008, 3 (08) :486-490
[8]   High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode [J].
Li, N ;
Li, XW ;
Demiguel, S ;
Zheng, XG ;
Campbell, JC ;
Tulchinsky, DA ;
Williams, KJ ;
Isshiki, TD ;
Kinsey, GS ;
Sudharsansan, R .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (03) :864-866
[9]   Dirac charge dynamics in graphene by infrared spectroscopy [J].
Li, Z. Q. ;
Henriksen, E. A. ;
Jiang, Z. ;
Hao, Z. ;
Martin, M. C. ;
Kim, P. ;
Stormer, H. L. ;
Basov, D. N. .
NATURE PHYSICS, 2008, 4 (07) :532-535
[10]   100-GHz Transistors from Wafer-Scale Epitaxial Graphene [J].
Lin, Y. -M. ;
Dimitrakopoulos, C. ;
Jenkins, K. A. ;
Farmer, D. B. ;
Chiu, H. -Y. ;
Grill, A. ;
Avouris, Ph. .
SCIENCE, 2010, 327 (5966) :662-662