The stress in diamond films prepared by microwave plasma CVD was investigated as a function of methane concentration (0.2%-3.0%) and deposition temperature (600-900-degrees-C). Tensile and compressive total (thermal and intrinsic) stress were observed, depending on the deposition conditions. The thermal stress is compressive and relatively constant (0.215-0.275 GPa) over the temperature range investigated. The intrinsic stress is tensile and its origin is interpreted in terms of the grain boundary relaxation model. Calculations indicate a value of 0.84 GPa, using the grain boundary model, which is in fair agreement with the measured value. For the methane series, the tensile intrinsic stress decreases with increasing the methane fraction. The increasing compressive stress is ascribed to increased impurity (hydrogen and nondiamond phase carbon) incorporation with increasing methane fraction. N-15 nuclear reaction analysis shows a linear correlation between hydrogen in the film and methane in the supply gas while spectroscopic ellipsometry shows a direct correlation between optically absorbing nondiamond (sp2) carbon incorporation and methane. For the temperature series, the intrinsic tensile stress increases with deposition temperature. The increase is ascribed to decreasing sp2 C incorporation with temperature, as confirmed by spectroscopic ellipsometry measurements.