Inverse design with deep generative models: next step in materials discovery

被引:2
作者
Shuaihua Lu [1 ]
Qionghua Zhou [1 ]
Xinyu Chen [1 ]
Zhilong Song [1 ]
Jinlan Wang [1 ]
机构
[1] School of Physics, Southeast University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP181 [自动推理、机器学习]; TB30 [工程材料一般性问题];
学科分类号
0805 ; 080502 ; 081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the past few years, machine-learning(ML) techniques have been extensively applied in material discovery. Such techniques are applied to minimize the computationally or experimentally expensive costs of the research process, greatly reducing overall design time [1]. Typically,ML algorithms are combined with traditional methods like first-principle calculations to accelerate the optimization of compositions on the known crystal structures(elemental substitution) in the database or literature, or to search for new configurations of a fixed chemical composition.
引用
收藏
页码:15 / 17
页数:3
相关论文
共 9 条
  • [1] Inverse design of 3d molecular structures with conditional generative neural networks
    Gebauer, Niklas W. A.
    Gastegger, Michael
    Hessmann, Stefaan S. P.
    Mueller, Klaus-Robert
    Schuett, Kristof T.
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [2] Inverse design of nanoporous crystalline reticular materials with deep generative models
    Yao, Zhenpeng
    Sanchez-Lengeling, Benjamin
    Bobbitt, N. Scott
    Bucior, Benjamin J.
    Kumar, Sai Govind Hari
    Collins, Sean P.
    Burns, Thomas
    Woo, Tom K.
    Farha, Omar K.
    Snurr, Randall Q.
    Aspuru-Guzik, Alan
    [J]. NATURE MACHINE INTELLIGENCE, 2021, 3 (01) : 76 - 86
  • [3] Generative Adversarial Networks for Crystal Structure Prediction
    Kim, Sungwon
    Noh, Juhwan
    Gu, Geun Ho
    Aspuru-Guzik, Alan
    Jung, Yousung
    [J]. ACS CENTRAL SCIENCE, 2020, 6 (08) : 1412 - 1420
  • [4] Machine-enabled inverse design of inorganic solid materials: promises and challenges[J] . Juhwan Noh,Geun Ho Gu,Sungwon Kim,Yousung Jung.Chemical Science . 2020 (19)
  • [5] Inverse Design of Solid-State Materials via a Continuous Representation
    Noh, Juhwan
    Kim, Jaehoon
    Stein, Helge S.
    Sanchez-Lengeling, Benjamin
    Gregoire, John M.
    Aspuru-Guzik, Alan
    Jung, Yousung
    [J]. MATTER, 2019, 1 (05) : 1370 - 1384
  • [6] Search for Catalysts by Inverse Design: Artificial Intelligence, Mountain Climbers, and Alchemists
    Freeze, Jessica G.
    Kelly, H. Ray
    Batista, Victor S.
    [J]. CHEMICAL REVIEWS, 2019, 119 (11) : 6595 - 6612
  • [7] Inverse molecular design using machine learning: Generative models for matter engineering[J] . Benjamin Sanchez-Lengeling,Alán Aspuru-Guzik.Science . 2018 (6400)
  • [8] Machine learning for molecular and materials science
    Butler, Keith T.
    Davies, Daniel W.
    Cartwright, Hugh
    Isayev, Olexandr
    Walsh, Aron
    [J]. NATURE, 2018, 559 (7715) : 547 - 555
  • [9] Lu SH,Zhou QH,Guo YL et al. Chemtracts . 2022