Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction

被引:313
作者
Zhu, Chengzhou [1 ]
Dong, Shaojun [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
NITROGEN-DOPED GRAPHENE; METAL-FREE ELECTROCATALYSTS; ONE-POT SYNTHESIS; REDUCED GRAPHENE; FUNCTIONALIZED GRAPHENE; FACILE SYNTHESIS; EFFICIENT ELECTROCATALYST; PLATINUM NANOPARTICLES; CATHODE CATALYST; ONE-STEP;
D O I
10.1039/c2nr33839d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Development of state-of-the-art electrocatalysts with inexpensive and commercially available materials to facilitate sluggish cathodic oxygen reduction reaction (ORR) is a key issue in the development of fuel cells and other electrochemical energy devices. Although great progress has been achieved in this area of research and development, there are still some challenges in both their ORR activity and stability. The emergence of graphene (GN) provides an excellent alternative to electrode materials and great efforts have been made to utilize GN-based nanomaterials as promising electrode materials for ORR due to the high electrical conductivity, large specific surface area, profuse interlayer structure and abounding functional groups involved. It should be noted that rational design of these GN-based nanomaterials with well-defined morphology also plays an important role in their electrochemical performance for ORR. Considerable attempts were achieved to construct a variety of heteroatom doped GN nanomaterials or GN-based nanocomposites, aiming at fully using their excellent properties in their application in ORR. In this critical review, in line with the material design and engineering, some recent advancements in the development of GN-based electrocatalysts for ORR in electrochemical energy devices (fuel cells and batteries) are then highlighted, including heteroatom-doped GN nanomaterials, GN-based nonprecious hybrid nanocomposites (GN/metal oxides, GN/N-M, GN/carbon nitride, etc.) and GN/noble metal nanocomposites.
引用
收藏
页码:1753 / 1767
页数:15
相关论文
共 157 条
[1]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[2]   Graphene as a new carbon support for low-temperature fuel cell catalysts [J].
Antolini, Ermete .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 123 :52-68
[3]   Pt Nanoparticle-Dispersed Graphene-Wrapped MWNT Composites As Oxygen Reduction Reaction Electrocatalyst in Proton Exchange Membrane Fuel Cell [J].
Aravind, S. S. Jyothirmayee ;
Ramaprabhu, Sundara .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (08) :3805-3810
[4]   A class of non-precious metal composite catalysts for fuel cells [J].
Bashyam, Rajesh ;
Zelenay, Piotr .
NATURE, 2006, 443 (7107) :63-66
[5]   Novel carbon-supported Fe-N electrocatalysts synthesized through heat treatment of iron tripyridyl triazine complexes for the PEM fuel cell oxygen reduction reaction [J].
Bezerra, Cicero W. B. ;
Zhang, Lei ;
Lee, Kunchan ;
Liu, Hansan ;
Zhang, Jianlu ;
Shi, Zheng ;
Marques, Aldalea L. B. ;
Marques, Edmar P. ;
Wu, Shaohong ;
Zhang, Jiujun .
ELECTROCHIMICA ACTA, 2008, 53 (26) :7703-7710
[6]   Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures [J].
Britnell, L. ;
Gorbachev, R. V. ;
Jalil, R. ;
Belle, B. D. ;
Schedin, F. ;
Mishchenko, A. ;
Georgiou, T. ;
Katsnelson, M. I. ;
Eaves, L. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Leist, J. ;
Geim, A. K. ;
Novoselov, K. S. ;
Ponomarenko, L. A. .
SCIENCE, 2012, 335 (6071) :947-950
[7]   Graphene-Based Non-Noble-Metal Catalysts for Oxygen Reduction Reaction in Acid [J].
Byon, Hye Ryung ;
Suntivich, Jin ;
Shao-Horn, Yang .
CHEMISTRY OF MATERIALS, 2011, 23 (15) :3421-3428
[8]   Recent Progress in Non-Precious Catalysts for Metal-Air Batteries [J].
Cao, Ruiguo ;
Lee, Jang-Soo ;
Liu, Meilin ;
Cho, Jaephil .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :816-829
[9]   Solvothermal Synthesis of Platinum Alloy Nanoparticles for Oxygen Reduction Electrocatalysis [J].
Carpenter, Michael K. ;
Moylan, Thomas E. ;
Kukreja, Ratandeep Singh ;
Atwan, Mohammed H. ;
Tessema, Misle M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (20) :8535-8542
[10]   Nitrogen-Doped Carbon Nanocages as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction [J].
Chen, Sheng ;
Bi, Jiyu ;
Zhao, Yu ;
Yang, Lijun ;
Zhang, Chen ;
Ma, Yanwen ;
Wu, Qiang ;
Wang, Xizhang ;
Hu, Zheng .
ADVANCED MATERIALS, 2012, 24 (41) :5593-5597