Suppression of ambipolar behavior in metallic source/drain metal-oxide-semiconductor field-effect transistors

被引:17
作者
Ghoneim, H. [1 ]
Knoch, J. [1 ]
Riel, H. [1 ]
Webb, D. [1 ]
Bjoerk, M. T. [1 ]
Karg, S. [1 ]
Loertscher, E. [1 ]
Schmid, H. [1 ]
Riess, W. [1 ]
机构
[1] IBM Res GmbH, IBM Res Zurich, CH-8803 Ruschlikon, Switzerland
关键词
MOSFET; Schottky barriers; silicon compounds;
D O I
10.1063/1.3266526
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a study on suppressing the ambipolar behavior of Schottky barrier metal-oxide-semiconductor field-effect transistors (MOSFET). Inserting a silicon nitride layer of appropriate thickness between the metallic source/drain electrodes and the silicon yields a low Schottky-barrier and simultaneously tunes the properties of the contact from metal-semiconductor-like to the behavior of a doped contact. Moreover, device characteristics of pseudo-MOSFETs reveal an efficient suppression of ambipolar behavior. Comparison with an alternative way of achieving low Schottky-barrier contacts, i.e., by inserting a strong dipole layer such as LiF between the metal and the silicon, reveals that the suppression is not a result of shifting the Fermi level closer to the conduction band but is caused by a reduction of metal-induced gap states. The trade-off between suppression of the ambipolar behavior, contact length and on-state current is investigated with simulations.
引用
收藏
页数:3
相关论文
共 15 条
[1]   MODELS FOR CONTACTS TO PLANAR DEVICES [J].
BERGER, HH .
SOLID-STATE ELECTRONICS, 1972, 15 (02) :145-&
[2]  
Björk MT, 2009, NAT NANOTECHNOL, V4, P103, DOI [10.1038/NNANO.2008.400, 10.1038/nnano.2008.400]
[3]   Fermi-level depinning for low-barrier Schottky source/drain transistors [J].
Connelly, D ;
Faulkner, C ;
Clifton, PA ;
Grupp, DE .
APPLIED PHYSICS LETTERS, 2006, 88 (01)
[4]  
DATTA S., 1998, ELECT TRANSPORT MESO
[5]   Ionization energy of donor and acceptor impurities in semiconductor nanowires: Importance of dielectric confinement [J].
Diarra, Mamadou ;
Niquet, Yann-Michel ;
Delerue, Christophe ;
Allan, Guy .
PHYSICAL REVIEW B, 2007, 75 (04)
[6]   High-speed Schottky-barrier pMOSFET with fT=280 GHz [J].
Fritze, M ;
Chen, CL ;
Calawa, S ;
Yost, D ;
Wheeter, B ;
Wyatt, P ;
Keast, CL ;
Snyder, J ;
Larson, J .
IEEE ELECTRON DEVICE LETTERS, 2004, 25 (04) :220-222
[7]   Thermally assisted hole tunneling at the Au-Si3N4 interface and the energy-band diagram of metal-nitride-oxide-semiconductor structures [J].
Gritsenko, VA ;
Meerson, EE ;
Morokov, YN .
PHYSICAL REVIEW B, 1998, 57 (04) :R2081-R2083
[8]   Characteristics of erbium-silicided n-type Schottky barrier tunnel transistors [J].
Jang, M ;
Oh, J ;
Maeng, S ;
Cho, W ;
Lee, S ;
Kang, K ;
Park, K .
APPLIED PHYSICS LETTERS, 2003, 83 (13) :2611-2613
[9]  
Kinoshita A, 2004, 2004 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, P168
[10]   Physics of ultrathin-body silicon-on-insulator Schottky-barrier field-effect transistors [J].
Knoch, J. ;
Zhang, M. ;
Appenzeller, J. ;
Mantl, S. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2007, 87 (03) :351-357