Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices

被引:676
作者
Choi, Min Sup [1 ,2 ]
Lee, Gwan-Hyoung [1 ,3 ]
Yu, Young-Jun [4 ,5 ]
Lee, Dae-Yeong [1 ,2 ]
Lee, Seung Hwan [1 ,2 ]
Kim, Philip [5 ]
Hone, James [3 ]
Yoo, Won Jong [1 ,2 ]
机构
[1] Sungkyunkwan Univ, Samsung SKKU Graphene Ctr SSGC, Suwon 440746, Gyeonggi Do, South Korea
[2] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol SAINT, Dept Nano Sci & Technol, Suwon 440746, Gyeonggi Do, South Korea
[3] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
[4] Elect & Telecommun Res Inst, Taejon 305700, South Korea
[5] Columbia Univ, Dept Phys, New York, NY 10027 USA
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
HIGH-QUALITY; TRANSPORT; ELECTRON; GROWTH; FILMS;
D O I
10.1038/ncomms2652
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Atomically thin two-dimensional materials have emerged as promising candidates for flexible and transparent electronic applications. Here we show non-volatile memory devices, based on field-effect transistors with large hysteresis, consisting entirely of stacked two-dimensional materials. Graphene and molybdenum disulphide were employed as both channel and charge-trapping layers, whereas hexagonal boron nitride was used as a tunnel barrier. In these ultrathin heterostructured memory devices, the atomically thin molybdenum disulphide or graphene-trapping layer stores charge tunnelled through hexagonal boron nitride, serving as a floating gate to control the charge transport in the graphene or molybdenum disulphide channel. By varying the thicknesses of two-dimensional materials and modifying the stacking order, the hysteresis and conductance polarity of the field-effect transistor can be controlled. These devices show high mobility, high on/off current ratio, large memory window and stable retention, providing a promising route towards flexible and transparent memory devices utilizing atomically thin two-dimensional materials.
引用
收藏
页数:7
相关论文
共 44 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Stretching and Breaking of Ultrathin MoS2 [J].
Bertolazzi, Simone ;
Brivio, Jacopo ;
Kis, Andras .
ACS NANO, 2011, 5 (12) :9703-9709
[3]   Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures [J].
Britnell, L. ;
Gorbachev, R. V. ;
Jalil, R. ;
Belle, B. D. ;
Schedin, F. ;
Mishchenko, A. ;
Georgiou, T. ;
Katsnelson, M. I. ;
Eaves, L. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Leist, J. ;
Geim, A. K. ;
Novoselov, K. S. ;
Ponomarenko, L. A. .
SCIENCE, 2012, 335 (6071) :947-950
[4]  
Brown W.D., 1998, Nonvolatile Semiconductor Memory Technology: A Comprehensive Guide to Understanding and to Using NVSM Devices
[5]   New directions in science and technology: two-dimensional crystals [J].
Castro Neto, A. H. ;
Novoselov, K. .
REPORTS ON PROGRESS IN PHYSICS, 2011, 74 (08)
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]   Nonvolatile Memory Device Using Gold Nanoparticles Covalently Bound to Reduced Graphene Oxide [J].
Cui, Peng ;
Seo, Sohyeon ;
Lee, Junghyun ;
Wang, Luyang ;
Lee, Eunkyo ;
Min, Misook ;
Lee, Hyoyoung .
ACS NANO, 2011, 5 (09) :6826-6833
[8]   Field emission and current-voltage properties of boron nitride nanotubes [J].
Cumings, J ;
Zettl, A .
SOLID STATE COMMUNICATIONS, 2004, 129 (10) :661-664
[9]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[10]   Nonvolatile memory devices based on few-layer graphene films [J].
Doh, Yong-Joo ;
Yi, Gyu-Chul .
NANOTECHNOLOGY, 2010, 21 (10)