Strong Charge-Transfer Doping of 1 to 10 Layer Graphene by NO2

被引:174
作者
Crowther, Andrew C. [1 ]
Ghassaei, Amanda [1 ]
Jung, Naeyoung [1 ]
Brus, Louis E. [1 ]
机构
[1] Columbia Univ, Dept Chem, New York, NY 10027 USA
关键词
graphene; NO2; nitrogen dioxide; Raman spectroscopy; charge transfer; doping; ELECTRONIC-STRUCTURE; RAMAN-SCATTERING; INTERCALATION COMPOUNDS; GRAPHITE; ADSORPTION; CONSTANT; DOPANTS; GAS;
D O I
10.1021/nn300252a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We use resonance Raman and optical reflection contrast methods to study charge transfer in 1-10 layer (1L-10L) thick graphene samples on which NO2 has adsorbed. Electrons transfer from the graphene to NO2, leaving the graphene layers doped with mobile delocalized holes. Doping follows a Langmuir-type isotherm as a function of NO2 pressure. Raman and optical contrast spectra provide independent, self-consistent measures of the hole density and distribution as a function of the number of layers (N). At high doping, as the Fermi level shift E-F reaches half the laser photon energy, a resonance in the graphene G mode Raman intensity is observed. We observe a decrease of graphene optical absorption in the near-IR that is due to hole-doping. Highly doped graphene Is more optically transparent and much more electrically conductive than intrinsic graphene: In thicker samples, holes are effectively confined near the surface, and in these samples, a small band gap opens near the surface. We discuss the properties and versatility of these highly charge-transfer-doped, few-layer-thick graphene samples as a new class of electronic materials.
引用
收藏
页码:1865 / 1875
页数:11
相关论文
共 74 条
[1]  
Ando T., 2006, J Phys Soc Jpn, P75
[2]   Field Effects on Optical Phonons in Bilayer Graphene [J].
Ando, Tsuneya ;
Koshino, Mikito .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2009, 78 (03)
[3]   Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene [J].
Basko, D. M. ;
Piscanec, S. ;
Ferrari, A. C. .
PHYSICAL REVIEW B, 2009, 80 (16)
[4]   Calculation of the Raman G peak intensity in monolayer graphene: role of Ward identities [J].
Basko, D. M. .
NEW JOURNAL OF PHYSICS, 2009, 11
[5]   Commentary: Carbon Nanotubes, CdSe Nanocrystals, and Electron-Electron Interaction [J].
Brus, Louis .
NANO LETTERS, 2010, 10 (02) :363-365
[6]   Raman fingerprint of charged impurities in graphene [J].
Casiraghi, C. ;
Pisana, S. ;
Novoselov, K. S. ;
Geim, A. K. ;
Ferrari, A. C. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[7]   Doping dependence of the Raman peaks intensity of graphene close to the Dirac point [J].
Casiraghi, C. .
PHYSICAL REVIEW B, 2009, 80 (23)
[8]   Controlling inelastic light scattering quantum pathways in graphene [J].
Chen, Chi-Fan ;
Park, Cheol-Hwan ;
Boudouris, Bryan W. ;
Horng, Jason ;
Geng, Baisong ;
Girit, Caglar ;
Zettl, Alex ;
Crommie, Michael F. ;
Segalman, Rachel A. ;
Louie, Steven G. ;
Wang, Feng .
NATURE, 2011, 471 (7340) :617-620
[9]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[10]   Phonon renormalization in doped bilayer graphene [J].
Das, A. ;
Chakraborty, B. ;
Piscanec, S. ;
Pisana, S. ;
Sood, A. K. ;
Ferrari, A. C. .
PHYSICAL REVIEW B, 2009, 79 (15)