High-Mobility Ge p- and n-MOSFETs With 0.7-nm EOT Using HfO2/Al2O3/GeOx/Ge Gate Stacks Fabricated by Plasma Postoxidation

被引:191
作者
Zhang, Rui [1 ]
Huang, Po-Chin [1 ]
Lin, Ju-Chin [1 ]
Taoka, Noriyuki [1 ]
Takenaka, Mitsuru [1 ]
Takagi, Shinichi [1 ]
机构
[1] Univ Tokyo, Sch Engn, Tokyo 1138656, Japan
关键词
Equivalent oxide thickness (EOT); germanium; metal-oxide-semiconductor (MOS) field-effect transistor; (MOSFET); mobility; GERMANIUM; PASSIVATION; GEO2/GE; CMOS;
D O I
10.1109/TED.2013.2238942
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An ultrathin equivalent oxide thickness (EOT) HfO2/Al2O3/Ge gate stack has been fabricated by combining the plasma postoxidation method with a 0.2-nm-thick Al2O3 layer between HfO2 and Ge for suppressing HfO2-GeOx intermixing, resulting in a low-interface-state-density (D-it) GeOx/Ge metal-oxide-semiconductor (MOS) interface. The EOT of these gate stacks has been scaled down to 0.7-0.8 nm with maintaining the D-it in 10(11) cm(-2) . eV(-1) level. The p- and n-channel MOS field-effect transistors (MOSFETs) (p- and n-MOSFETs) using this gate stack have been fabricated on (100) Ge substrates and exhibit high hole and electron mobilities. It is found that the Ge p- and n-MOSFETs exhibit peak holemobilities of 596 and 546 cm(2)/V.s and peak electron mobilities of 754 and 689 cm(2)/V.s at EOTs of 0.82 and 0.76 nm, respectively, which are the record-high reports so far for Ge MOSFETs in subnanometer EOT range because of the sufficiently passivated GeMOS interfaces in present HfO2/Al2O3/GeOx/Ge gate stacks.
引用
收藏
页码:927 / 934
页数:8
相关论文
共 38 条
[31]  
Taoka N., 2006, EXT ABST SSDM, P396, DOI [10.7567/SSDM.2006.J-6-1, DOI 10.7567/SSDM.2006.J-6-1]
[32]   Opportunities and challenges for Ge CMOS - Control of interfacing field on Ge is a key [J].
Toriumi, Akira ;
Tabata, Toshiyuki ;
Lee, Choong Hyun ;
Nishimura, Tomonori ;
Kita, Koji ;
Nagashio, Kosuke .
MICROELECTRONIC ENGINEERING, 2009, 86 (7-9) :1571-1576
[33]   Effect of hafnium germanate formation on the interface of HfO2/germanium metal oxide semiconductor devices [J].
Van Elshocht, S ;
Caymax, M ;
Conard, T ;
De Gendt, S ;
Hoflijk, I ;
Houssa, M ;
De Jaeger, B ;
Van Steenbergen, J ;
Heyns, M ;
Meuris, M .
APPLIED PHYSICS LETTERS, 2006, 88 (14)
[34]   ELECTRON-CYCLOTRON-RESONANCE PLASMA AND THERMAL-OXIDATION MECHANISMS OF GERMANIUM [J].
WANG, Y ;
HU, YZ ;
IRENE, EA .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1994, 12 (04) :1309-1314
[35]   TiO2/HfO2 Bi-Layer Gate Stacks Grown by Atomic Layer Deposition for Germanium-Based Metal-Oxide-Semiconductor Devices Using GeOxNy Passivation Layer [J].
Xie, Qi ;
Musschoot, Jan ;
Schaekers, Marc ;
Caymax, Matty ;
Delabie, Annelies ;
Lin, Dennis ;
Qu, Xin-Ping ;
Jiang, Yu-Long ;
Van den Berghe, Sven ;
Detavernier, Christophe .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2011, 14 (05) :G27-G30
[36]   Drive-current enhancement in Ge n-channel MOSFET using laser annealing for source/drain activation [J].
Zhang, Qingchun ;
Huang, Jidong ;
Wu, Nan ;
Chen, Guoxin ;
Hong, Minghui ;
Bera, L. K. ;
Zhu, Chunxiang .
IEEE ELECTRON DEVICE LETTERS, 2006, 27 (09) :728-730
[37]   High-Mobility Ge pMOSFET With 1-nm EOT Al2O3/GeOx/Ge Gate Stack Fabricated by Plasma Post Oxidation [J].
Zhang, Rui ;
Iwasaki, Takashi ;
Taoka, Noriyuki ;
Takenaka, Mitsuru ;
Takagi, Shinichi .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (02) :335-341
[38]  
Zhang R, 2011, 2011 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM)