Current saturation in zero-bandgap, topgated graphene field-effect transistors

被引:1379
作者
Meric, Inanc [1 ]
Han, Melinda Y. [2 ]
Young, Andrea F. [3 ]
Ozyilmaz, Barbaros [3 ]
Kim, Philip [3 ]
Shepard, Kenneth L. [1 ]
机构
[1] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[2] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[3] Columbia Univ, Dept Phys, New York, NY 10027 USA
关键词
D O I
10.1038/nnano.2008.268
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The novel electronic properties of graphene(1-4), including a linear energy dispersion relation and purely two-dimensional structure, have led to intense research into possible applications of this material in nanoscale devices. Here we report the first observation of saturating transistor characteristics in a graphene field-effect transistor. The saturation velocity depends on the charge-carrier concentration and we attribute this to scattering by interfacial phonons in the SiO2 layer supporting the graphene channels(5,6). Unusual features in the current-voltage characteristic are explained by a field-effect model and diffusive carrier transport in the presence of a singular point in the density of states. The electrostatic modulation of the channel through an efficiently coupled top gate yields transconductances as high as 150 mu S mu m(-1) despite low on-off current ratios. These results demonstrate the feasibility of two-dimensional graphene devices for analogue and radio-frequency circuit applications without the need for bandgap engineering.
引用
收藏
页码:654 / 659
页数:6
相关论文
共 32 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]   Analysis of the frequency response of carbon nanotube transistors [J].
Akinwande, Deji ;
Close, Gael E. ;
Wong, H. -S. Philip .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2006, 5 (05) :599-605
[3]   Carbon-based electronics [J].
Avouris, Phaedon ;
Chen, Zhihong ;
Perebeinos, Vasili .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :605-615
[4]   CHARGE-SHEET MODEL OF MOSFET [J].
BREWS, JR .
SOLID-STATE ELECTRONICS, 1978, 21 (02) :345-355
[5]   ELECTRON AND HOLE DRIFT VELOCITY-MEASUREMENTS IN SILICON AND THEIR EMPIRICAL RELATION TO ELECTRIC-FIELD AND TEMPERATURE [J].
CANALI, C ;
MAJNI, G ;
MINDER, R ;
OTTAVIANI, G .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1975, 22 (11) :1045-1047
[6]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[7]   Electric-field-dependent charge-carrier velocity in semiconducting carbon nanotubes [J].
Chen, YF ;
Fuhrer, MS .
PHYSICAL REVIEW LETTERS, 2005, 95 (23)
[8]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[9]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[10]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)