Dynamics of charge carrier trapping in NO2 sensors based on ZnO field-effect transistors

被引:16
作者
Andringa, Anne-Marije [1 ,2 ]
Vlietstra, Nynke [1 ,2 ]
Smits, Edsger C. P. [3 ]
Spijkman, Mark-Jan [1 ,2 ]
Gomes, Henrique L. [4 ]
Klootwijk, Johan H. [1 ]
Blom, Paul W. M. [2 ,3 ]
de Leeuw, Dago M. [1 ,2 ]
机构
[1] Philips Res Labs, NL-5656 AE Eindhoven, Netherlands
[2] Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands
[3] Holst Ctr, NL-5656 AE Eindhoven, Netherlands
[4] Univ Algarve, Fac Sci & Technol, P-8005139 Faro, Portugal
关键词
NO2; sensors; Field-effect transistor; Charge carrier trapping; Threshold voltage shift; Stretched-exponential; Thermally stimulated current; Activation energy; ROOM-TEMPERATURE; CARBON NANOTUBES; CHEMICAL SENSORS; GAS SENSORS; THIN-FILMS; OXIDE; DEVICES; STATES;
D O I
10.1016/j.snb.2012.06.062
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Nitrogen dioxide (NO2) detection with ZnO field-effect transistors is based on charge carrier trapping. Here we investigate the dynamics of charge trapping and recovery as a function of temperature by monitoring the threshold voltage shift. The threshold voltage shifts follow a stretched-exponential time dependence with thermally activated relaxation times. We find an activation energy of 0.1 eV for trapping and 1.2 eV for detrapping. The attempt-to-escape frequency and characteristic temperature have been determined as 1 Hz and 960 K for charge trapping and 10(11) Hz and 750 K for recovery, respectively. Thermally stimulated current measurements confirm the presence of trapped charge carriers with a trap depth of around 1 eV. The obtained functional dependence is used as input for an analytical model that predicts the sensor's temporal behavior. The model is experimentally verified and a real-time sensor has been developed. The perfect agreement between predicted and measured sensor response validates the methodology developed. The analytical description can be used to optimize the driving protocol. By adjusting the operating temperature and the duration of charging and resetting, the response time can be optimized and the sensitivity can be maximized for the desired partial NO2 pressure window. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1172 / 1179
页数:8
相关论文
共 29 条
[1]   Gate-Bias Controlled Charge Trapping as a Mechanism for NO2 Detection with Field-Effect Transistors [J].
Andringa, Anne-Marije ;
Meijboom, Juliaan R. ;
Smits, Edsger C. P. ;
Mathijssen, Simon G. J. ;
Blom, Paul W. M. ;
de Leeuw, Dago M. .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (01) :100-107
[2]   An integrated CMOS sensing chip for NO2 detection [J].
Barillaro, G. ;
Strambini, L. M. .
SENSORS AND ACTUATORS B-CHEMICAL, 2008, 134 (02) :585-590
[3]   Low-concentration NO2 detection with an adsorption porous silicon FET [J].
Barillaro, G ;
Diligenti, A ;
Nannini, A ;
Strambini, LM ;
Comini, E ;
Sberveglieri, G .
IEEE SENSORS JOURNAL, 2006, 6 (01) :19-23
[4]   Conduction model of metal oxide gas sensors [J].
Barsan, N ;
Weimar, U .
JOURNAL OF ELECTROCERAMICS, 2001, 7 (03) :143-167
[5]   Metal oxide-based gas sensor research: How to? [J].
Barsan, N. ;
Koziej, D. ;
Weimar, U. .
SENSORS AND ACTUATORS B-CHEMICAL, 2007, 121 (01) :18-35
[6]   High-Performance Zinc Oxide Transistors and Circuits Fabricated by Spray Pyrolysis in Ambient Atmosphere [J].
Bashir, Aneeqa ;
Woebkenberg, Paul H. ;
Smith, Jeremy ;
Ball, James M. ;
Adamopoulos, George ;
Bradley, Donal D. C. ;
Anthopoulos, Thomas D. .
ADVANCED MATERIALS, 2009, 21 (21) :2226-+
[7]   ELECTRICAL CHARACTERIZATION OF SEMICONDUCTORS [J].
BLOOD, P ;
ORTON, JW .
REPORTS ON PROGRESS IN PHYSICS, 1978, 41 (02) :157-257
[8]  
Blood P, 1992, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Techniques of Physics)
[9]   Study of trap states in zinc oxide (ZnO) thin films for electronic applications [J].
Casteleiro, C. ;
Gomes, H. L. ;
Stallinga, P. ;
Bentes, L. ;
Ayouchi, R. ;
Schwarz, R. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2008, 354 (19-25) :2519-2522
[10]  
Chen R., 1981, ANAL THERMALLY STIMU